SUPPLEMENTAL TABLE 1. The additional characteristics and reported diagnostic performance of 10 studies included in

the meta-analysis

Author / year (Reference)	No. of evaluated patients / No. of patients in original cohort	Inclusion-exclusion criteria	Technical characteristics	Reported diagnostic performance (Sensitivity /Specificity)	Country
Rose / 1999 (40)	32/32	Inclusion: FIGO stage IIB to IVA, no evidence of extrapelvic disease by CT scanning Exclusion: under 18 years of age, medically unstable, pregnant, lactating, body weight exceed 350 pounds	FDG: 20 mCi Fasting: 4h Time interval: 60 min PET scanner: Siemens ECAT EXACT	75% /92%	US
Narayan / 2001 (37)	26/27	Inclusion: All operable patients without definitive CT evidence of PALN disease (only PALN sampling if enlarged pelvic nodes was detected on CT scan)	FDG: 80 to 120 MBq Fasting: 4h Time interval: 60 min PET scanner: PENN-PET 300H, UGM Medical Systems, Philadelphia, PA	40% /95%	US
Reinhardt / 2001 (38)	12/35	Inclusion: cervical cancer patients	FDG: 370 MBq Fasting: overnight Time interval: 100 min PET scanner: Siemens ECAT EXACT 921	100% /100%	Germany

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 51 • No. 3 • March 2010

1

Lin / 2003 (35)		Inclusion: FIGO stage IIB through IVA or			
		stage IB or IIA with a tumor diameter of	FDG: 10 mCi (370 MBq)		
		at least 5 cm or involvement of pelvic	Fasting: 4h	86%	
	50/50	lymph nodes) with negative abdominal	Time interval: 60 min	/94%	China
		CT finding (PALN less than 1.0 cm size)	PET scanner: GE advanced NXi	/ 54 /0	
		Exclusion: diabetic, pregnant, lactating,	PET (Milwaukee, WI)		
		under 18 years of age			
Roh / 2005 (39)		Inclusion: FIGO stage IB-IVA, age 18-	FDG: 10-15 mCi (370-555 MBq)		
		65, no contraindication for surgery, no	Fasting: 8h	0	
	54/54	evidence of distant metastasis, ECOG	Time interval: 60 min	/100%	Korea
		performance score 0-1	PET scanner: GE advance,	/100/8	
			Milwaukee, WI		
Wright / 2005 (42)			FDG: 15-20 mCi		
			Fasting: 4h		
			Time interval: 45-60 min		
	45/59	Inclusion: Invasive, FIGO stage IA2-IIA	Conventional PET scanner (before	25%	US
	-0/00	cervical carcinoma	Nov, 2002); PET-CT scanner (from	/98%	00
			Nov, 2002): Biograph LSO 2;		
			Siemens Medical Solutions,		
			Malvern, PA		
Choi / 2006 (33)		Inclusion: FIGO stage IB-IVA invasive	FDG: 12-20 mCi (444-740 MBq)		
		cervical cancer, no contraindication to	Fasting: 8h	33%	
	27/22	the surgical procedures, no evidence of	Time interval: 60 min	/92%	Korea
		distant metastasis, ECOG performance	PET-CT scanner: Biograph LSO	/ 32 /0	
		score 0-1	(Siemens Medical Solutions) or		

2

	Exclusion: histology other than	Discovery LS (GE Medical		
	squamous cell carcinoma	Systems)		
Boughanim / 2008 (32)	Inclusion: FIGO stage IB2 or II cervical	FDG: 4-5 MBq/kg		
	cancer	Fasting: NR		
20/	Exclusion: patients with PALN	Time interval: 50-70 min	0	France
38/3	suggestive of abnormality on MRI or CT	PET scanner: Biograph LSO	/100%	France
	scan and with significant uptake in PALN	(Siemens Medical Solutions,		
	in PET-CT	Erlangen, Germany)		
Vergote / 2008 (41)	Inclusion: FIGO stage IB2-IIIB cervical		0	
85/4	44 cancer without PALN metastasis on PET	NR	/100%	Belgium
	and CT or PET-CT		/100 /6	
Yildirim / 2008 (43)	Inclusion: patients with locally advanced			
	cervical cancer with negative CT			
	findings for PALN metastasis			
	Exclusion: age>70 years, concurrent or	FDG: 10-15 mCi (370-555 MBq)		
	previous malignant disease, previous	Fasting: 4h	50%	
16/*	16 radiation therapy, adenocarcinoma or	Time interval: 60 min	/83%	Turkey
	adenosquamous carcinoma histology,	PET scanner: NR		
	WHO performance status \geq 3,			
	inadequate renal, hepatic, cardiac			
	function, BMI > 40			

FIGO = International Federation of Gynecology and Obstetrics; FDG = ¹⁸F-fluorodeoxyglucose; PET = positron emission tomography; PALN = para-aortic

lymph node; CT = computed tomography; ECOG = Eastern Cooperative Oncology Group; WHO = World Health Organization; NR = not reported

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 51 • No. 3 • March 2010

QUADAS components	Rose	Narayan	Reinhardt	Lin	Roh	Wright	Choi	Boughanim	Vergote	Yildirim
	1999	2001	2001	2003	2005	2005	2006	2008	2008	2008
1. Was the spectrum of patients representative of	0	0	0	0	0	0	0	0	0	0
the patients who will receive the test in practice?	Ū	0	0	Ū	U	0	0	0	0	0
2. Were selection criteria clearly described?	1	0	0	1	1	0	1	0	0	1
3. Is the reference standard likely to correctly	1	4	1	1	1	1	1	1	1	1
classify the target condition?	I	1								I
4. Is the time period between reference standard										
and index test short enough to be reasonably	0	0	0	0	0	0	0	0	1	1
sure that the target condition did not change	0	0	0	0	0	U	0	0	I	I
between the two tests?										
5 Did the whole sample or a random selection of										
the sample, receive verification using a reference	1	0	0	0	1	0	1	1	0	1
standard of diagnosis?										
6. Did patients receive the same reference	1	1	1	1	1	1	1	1	1	4
standard regardless of the index test result?	I	I	I	I	I	I	I	I	I	I
7. Was the reference standard independent of the	1	1	1	1	1	1	1	4	1	4
index test?	1	1	1	1	1	1	1	1	1	I

4

SUPPLEMENTAL TABLE 2. Quality assessment scores of 10 studies included in the meta-analysis

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 51 • No. 3 • March 2010

8. Was the execution of the index test described in sufficient detail to permit replication of the test?	1	1	1	1	1	1	1	1	0	0
9. Was the execution of the reference standard										
described in sufficient detail to permit its	1	1	0	1	1	1	1	1	1	1
replication?										
10. Were the index test results interpreted without										
knowledge of the results of the reference	0	1	1	0	0	0	1	1	0	1
standard?										
11. Were the reference standard results interpreted										
without knowledge of the results of the index	0	0	0	0	0	0	0	0	0	0
test?										
12. Were the same clinical data available when test										
results were interpreted as would be available	1	1	1	1	1	1	1	1	1	1
when the test is used in practice?										
13. Were uninterpretable/ intermediate test results	1	1	1	1	1	1	1	1	1	1
reported?	·			·	·	·	·	·	·	·
14. Were withdrawals from the study explained?	1	0	0	1	0	1	1	0	0	1
Total score	10	8	7	9	9	8	11	9	7	11

QUADAS = quality assessment of studies of diagnostic accuracy

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 51 • No. 3 • March 2010

	PET (n = 5)	PET-CT (n = 5)
Sensitivity	66% (95% CI = 33% to 89%)	13% (95% CI = 2% to 56%)
Specificity	97% (95% CI = 90% to 99%)	98% (95% CI = 87% to 100%)
Diagnostic odds ratio	57.2 (95% CI = 13.9-235.4)	7.9 (95% CI = 1.0 to 61.8)
Positive LR	19.9 (95% CI = 7.2 to 55.4)	7.0 (95% CI = 1.0 to 47.4)
Negative LR	0.35 (95% CI = 0.14 to 0.87)	0.89 (95% CI = 0.69 to 1.15)

SUPPLEMENTAL TABLE 3. The comparison of the performance between PET and PET-CT using bivariate model