
Validation: 2-fluoro-2-deoxy-D-glucose (FDG) Model

Overview

This document includes figures generated by comkat\validation\validateFDG.m. which implements the PET
FDG model with linear kinetics and two tissue compartments often labeled as Ce and Cm corresponding to
18FDG and 18FDG-6-phosphate trapped within the cell. The model and its application to PET are presented in
Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral
glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: validation of method. Ann.Neurol.
6:371-388, 1979.

Model Equations

Let Ce and Cm be the extravascular molar concentrations of 18FDG and 18FDG-6-phosphate and let Cp and Ca
denote, respectively, the plasma molar and whole blood activity concentrations. The kinetics are given by

dCe/dt = k1 Cp - k2Ce - k3Ce + k4Cm

dCm/dt = k3Ce - k4Cm

with zero initial conditions at time zero.

The model-predicted PET measurement or output for a scan frame beginning at time tb and ending at time te is
given as a weighted sum of the compartment concentrations and multiplied by the time-varying specific activity s
averaged over the scan frame

PET(tb, te) = ∫t
e

tb { PV s(Ce + Cm) + FV Ca} dt / (te - tb)

where PV is the partial volume factor and FV is vascular fraction.

Features Tested

linear kinetics
reference model solved analytically
model output
output sensitivities
compartment concentrations
compartment sensitivities

Method of Testing

Use COMKAT to implement model. As a reference for comparison, use an independent implementation in which
the model compartment differential equations are solved analytically to obtain an expression for its impulse
response (sum of two exponentials). Convolve this impulse response with a specified input function to yield
compartment concentration curves. This convolution is implemented according to the definition of the
convolution integral which is evaluated via numeric integration using the MATLAB function quadl.
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Solutions obtained using COMKAT and this independent implementation are compared by a plotting on same
axes, b plotting their difference or error, c computing the sum of squared differencs. In point c, this is done when
the equations are solved to different levels of precision with the expected behavior that the error decreases as the
specified tolerance is decreased (i.e. made more stringent).

Results

Note, quadl may generate messages Warning: Minimum step size reached; singularity possible.

Interpreting the Results

The figures below compare model solutions obtained using a COMKAT implementation of the model to those
obtained using an independent solution. Such results shown in this report are generated on your computer when
you ran comkat\validation\validateFDG.m. These results should agree if both implementations are correct.
To help visualize this, COMKAT solutions are depicted by circles and the independent solution is depicted by
lines. If the solutions agree well, the circles will be superimposed on the lines. In order to help visualize small
differences, the differences between the COMKAT and independent solutions are shown in the lower panel of
each plot.

In addition, corresponding plots generated by the COMKAT developers are also shown for comparison. These
results are not generated on-the-fly but are from a prior date. The purpose of this second set of plots is twofold.
First, they demonstrate how close the agreement should be between the COMKAT and independent
implementation. Second, they provide a reference to document how COMKAT and the independent software
performed in a particular configuration; i.e., with a particular version of COMKAT, MATLAB and operating
system.

Results shown in the left column are the "Your Computer" that were obtained using your computer. Results
shown in the right column are "Developer's Computer" results. Notice there is a time-stamp at the bottom right of
each plot.

For the sake of completeness, there are many plots. Perhaps the most important are model output and output
sensitivities. As these depend on compartment concentrations and compartment sensitivities, it is unlikely that
the output and output sensitivities could be correct unless the compartment and compartment sensitivities are
correct.

Do not be alarmed if you see messages "Warning: Minimum step size reached; singularity possible."

Model Output

In fitting the values of the parameters are adjusted until the model output "best" matches the measured data.

Your Computer Developer's Computer
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Your Computer Developer's Computer

Output Sensitivities

The output sensitivity functions predict how change in values of parameters will alter model output. Sensitivity
functions are important in fitting data since they provide the optimizer with information needed to efficiently
adjust parameter values so that the model output matches the measured data. COMKAT obtains output and
compartment sensitivity functions by setting up extra differential equations and solving them simultaneously with
the output and compartment concentration differential equations. This approach is more robust than the finite
difference approach which is used in most software.

Your Computer Developer's Computer
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Your Computer Developer's Computer
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Your Computer Developer's Computer

Convergence

The differential equations are solved numerically so differences in solutions are expected due to roundoff and
other issues. It is expected that by specifying better precision, such differences will be reduced. If software is
functioning correctly, the plots will show the mean squared differences will be reduced as the tolerances are
made more stringent.

Your Computer Developer's Computer
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Your Computer Developer's Computer

Compartment Concentrations

Compartment concentrations determine the pharmacokinetics and are used to calculate the model output.

Your Computer Developer's Computer

Compartment Sensitivities

Analogous to output sensitivities, compartment sensitivities are the derivatives of the compartment
concentrations with respect to the parameters. Compartment sensitivities are used to calculate the output
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sensitivities.

Your Computer Developer's Computer
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Your Computer Developer's Computer

Appendix: Analytic Solution

Compartment Concentrations

The compartment concentrations are described by these differential equations

dCe/dt = k1 Cp - k2Ce - k3Ce + k4Cm

dCm/dt = k3Ce - k4Cm
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In matrix form,

C′ = KC + LCp     (Eq. 1)

where

C =
Ce

Cm

K =
-(k2+k3)    k4

k3    -k4

and

L =
k1

0

Here I solve the set of differential equations using Laplace transforms.

Taking the Laplace transform of Eq. 1 and letting š s denote the Laplace domain variable, yields the algebraic
equation

šC = KC + L Cp

which has solution

C = (šI – K)–1 L Cp     (Eq. 2)

where

(šI – K) =
š+k2+k3    -k4

-k3    š+k4

and

(šI – K)–1 = ∆ -1
š+k4    k4

k3    š+k2+k3

with

∆ = š2 + š(k2 + k3 + k4) + k2k4

To facilitate calculating the inverse Laplace transform, it is advantageous to express this in an alternate form

∆ = (š - λ1)(š - λ2)

where

λ1,2 = -(k2+k3+k4)/2 ± sqrt[(k2+k3+k4)2 - 4k2k4]/2

Hence, the above expession (Eq. 2) for C becomes
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C = ∆ -1
š+k4    k4

k3    š+k2+k3
 

k1

0
Cp

Proceeding algebraically

C = ∆ -1
Cp k1(š+k4)

Cp k1k3

and continuing further

C =
Cp k1 (š+k4)(š - λ1)-1(š - λ2)-1

Cp k1 k3 (š - λ1)-1(š - λ2)-1

    =
Cp k1 (λ1 - λ2)-1[(k4+λ1)(š-λ1)-1 - (k4+λ2)(š-λ2)-1]

Cp k1k3 (λ1 - λ2)-1[(š-λ1)-1 - (š-λ2)-1]

Taking the inverse Laplace transform yields the time-domain expression

C =
Cp * {k1 (λ1 - λ2)-1[(k4+λ1)eλ1t - (k4+λ2)eλ2t]}

Cp * {k1k3 (λ1 - λ2)-1[eλ1t - eλ2t]}

where * denotes convolution.

Compartment Sensitivities

The compartment sensitivity equations can be obtained by differentiating the compartment concentration
equations with respect to the parameters.

dCe/dk1 = Cp * {(λ1 - λ2)-1[(k4+λ1)eλ1t - (k4+λ2)eλ2t]}

dCm/dk1 = Cp * {k3 (λ1 - λ2)-1[eλ1t - eλ2t]}

dCe/dk2 = Cp * {-k1 (λ1 - λ2)-2 (dλ1/dk2 - dλ2/dk2) [(k4 + λ1) eλ1t - (k4 + λ2) eλ2t]

            + k1 (λ1 - λ2)-1 [dλ1/dk2 eλ1t + (k4 + λ1) t dλ1/dk2eλ1t - dλ2/dk2 eλ2t - (k4 + λ2)t dλ2/dk2 eλ2t] }

dCm/dk2 = Cp * {-k1k3 (λ1 - λ2)-2 (dλ1/dk2 - dλ2/dk2) [eλ1t - eλ2t]

            + k1k3 (λ1 - λ2)-1 (t dλ1/dk2 eλ1t - t dλ2/dk2 eλ2t) }

dCe/dk3 = Cp * {-k1 (λ1 - λ2)-2 (dλ1/dk3 - dλ2/dk3) [(k4 + λ1) eλ1t - (k4 + λ2) eλ2t]

            + k1 (λ1 - λ2)-1 [dλ1/dk3 eλ1t + (k4 + λ1) t dλ1/dk3eλ1t - dλ2/dk3 eλ2t - (k4 + λ2)t dλ2/dk3 eλ2t] }

dCm/dk3 = Cp * {k1 (λ1 - λ2)-1 [eλ1t - eλ2t]

            - k1k3 (λ1 - λ2)-2 (dλ1/dk3 - dλ2/dk3) [eλ1t - eλ2t]

            + k1k3 (λ1 - λ2)-1 (t dλ1/dk3 eλ1t - t dλ2/dk3 eλ2t) }
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dCe/dk4 = Cp * {-k1 (λ1 - λ2)-2 (dλ1/dk4 - dλ2/dk4) [(k4 + λ1) eλ1t - (k4 + λ2) eλ2t]

            + k1 (λ1 - λ2)-1 [(1 + dλ1/dk4) eλ1t + (k4 + λ1) t dλ1/dk4eλ1t - (1 + dλ2/dk4) eλ2t - (k4 + λ2)t dλ2/dk4 eλ2t] }

dCm/dk4 = Cp * {-k1k3 (λ1 - λ2)-2 (dλ1/dk4 - dλ2/dk4) [eλ1t - eλ2t]

            + k1k3 (λ1 - λ2)-1 (t dλ1/dk4 eλ1t - t dλ2/dk4 eλ2t) }

where

dλ1,2/dk1 = 0

dλ1,2/dk2 = -1/2 ± [2(k2 + k3 + k4) - 4k4] / sqrt[(k2+k3+k4)2 - 4k2k4] /4

dλ1,2/dk3 = -1/2 ± [2(k2 + k3 + k4)] / sqrt[(k2+k3+k4)2 - 4k2k4] /4

dλ1,2/dk4 = -1/2 ± [2(k2 + k3 + k4) - 4k2] / sqrt[(k2+k3+k4)2 - 4k2k4] /4
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