SUPPLEMENTAL TABLE 1. Parameters in the RIT and in the Model

References

Guyton AC, Hall JE. Textbook of Medical Physiology. Tenth Edition. Philadelphia: Saunders; 2000:709-715.

Silverberg GD, Heit G, Huhn S, Jaffe RA, Chang SD, Bronte-Stewart H, Rubenstein E, Possin K, Saul TA. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer's type. Neurology. 2001;57:1763-1766.

Kramer K, Humm JL, Souweidane MM, Zanzonico PB, Dunkel IJ, Gerald WL, Khakoo Y, Yeh SD, Yeung HW, Finn RD, Wolden SL, Larson SM, Cheung NK. Phase I study of targeted radioimmunotherapy for leptomeningeal cancers using intra-Ommaya 131-I-3F8. J Clin Oncol. 2007;25:5465-5470.

Kramer K, Cheung NK, Humm J, DiResta G, Arbit E, Larson S, Finn R, Rosenblum M, Nguyen H, Gonzalez G, Liu C, Yang YF, Mendelsohn ME, Gillio AP. Pharmacokinetics and acute toxicology of intraventricular 131 I-monoclonal antibody targeting disialoganglioside in non-human primates. J Neurooncol. 1997;35:101-111.

Heiner JP, Miraldi F, Kallick S, Makley J, Neely J, Smith-Mensah WH, Cheung NK.
Localization of GD2-specific monoclonal antibody 3F8 in human osteosarcoma. Cancer Res. 1987;47:5377-5381.
$\mathrm{Xu} \mathrm{H} ,\mathrm{Hu} \mathrm{J} ,\mathrm{Cheung} \mathrm{NV} .\mathrm{Induction} \mathrm{of} \mathrm{tumor} \mathrm{cell} \mathrm{death} \mathrm{by} \mathrm{anti-GD2} \mathrm{monoclonal}$ antibodies (MoAb): Requirement of antibody Fc and a long residence time (slow koff). J Clin Oncol. 2007;25:13507.

Blasberg RG, Patlak CS, Shapiro WR. Distribution of methotrexate in the cerebrospinal fluid and brain after intraventricular administration. Cancer Treat Rep. 1977;61:633-641.

Barta P, Dazzan P. Hemispheric surface area: sex, laterality and age effects. Cereb Cortex. 2003;13:364-370.

SUPPLEMENTAL TABLE 2. Estimation for Tumor Antigen Concentrations at the Surface of CSF Compartment

Antigen concentration $\mathrm{C}_{\mathrm{R} 0}$ * (antigens/ml)	Fraction of CSF surface covered with one layer of tumor cells f (\%)	Number of antigens at the surface of a single tumor cell N_{R} (antigens/cell)
	0.003	10^{7}
5.73×10^{11}	0.03	10^{6}
	0.3	10^{5}
	0.03	10^{7}
5.73×10^{12}	0.3	10^{6}
	3	10^{5}
	0.3	10^{7}
5.73×10^{13}	3	10^{6}
	30	10^{5}
5.73×10^{14}	3	10^{7}
	30	10^{6}
${ }^{*} \mathrm{C}_{\mathrm{R} 0}=\mathrm{f} \times \mathrm{C}_{\mathrm{SC}} \times \mathrm{N}_{\mathrm{R}}$. Here tumor cell density at the surface of CSF space $\mathrm{C}_{\mathrm{SC}}=\frac{1}{\frac{4}{3} \pi\left(\frac{D_{T}}{2}\right)^{3}}$, assume tumor		

cell diameter $\mathrm{D}_{\mathrm{T}}=10 \mu \mathrm{~m}$.

SUPPLEMENAL TABLE 3. Comparison of measured data and model predictions

Patient 1			Patient 2			Patient 3		
$\operatorname{Dose}_{\mathrm{A}}=2.30 \mathrm{mg}$ protein			Dose $_{\text {A }}=4.52 \mathrm{mg}$ protein			$\mathrm{Dose}_{\mathrm{A}}=2.86 \mathrm{mg}$ protein		
$\mathrm{C}_{\mathrm{R} 0}=5.73 \times 10^{13}$ antigens $/ \mathrm{mL}$			$\mathrm{C}_{\mathrm{R} 0}=5.73 \times 10^{14}$ antigens $/ \mathrm{mL}$			$\mathrm{C}_{\mathrm{R} 0}=5.73 \times 10^{14}$ antigens $/ \mathrm{mL}$		
$\mathrm{CL}_{\mathrm{CSF}}=20 \mathrm{~mL} / \mathrm{h}, \mathrm{n}=1, \mathrm{~V}=140 \mathrm{~mL}$			$\mathrm{CL}_{\mathrm{CSF}}=20 \mathrm{~mL} / \mathrm{h}, \mathrm{n}=1, \mathrm{~V}=140 \mathrm{~mL}$			$\mathrm{CL}_{\mathrm{CSF}}=17 \mathrm{~mL} / \mathrm{h}, \mathrm{n}=14, \mathrm{~V}=140 \mathrm{~mL}$		
$\begin{aligned} & \text { Time } \\ & (\mathrm{min}) \end{aligned}$	Experiment $(\mathrm{kBq} / \mathrm{g})$	$\begin{aligned} & \text { Model } \\ & (\mathrm{kBq} / \mathrm{g}) \end{aligned}$	$\begin{aligned} & \text { Time } \\ & (\mathrm{min}) \end{aligned}$	Experiment $(\mathrm{kBq} / \mathrm{g})$	$\begin{aligned} & \text { Model } \\ & (\mathrm{kBq} / \mathrm{g}) \end{aligned}$	$\begin{aligned} & \text { Time } \\ & (\mathrm{min}) \end{aligned}$	Experiment $(\mathrm{kBq} / \mathrm{g})$	$\begin{aligned} & \text { Model } \\ & (\mathrm{kBq} / \mathrm{g}) \end{aligned}$
5	2748.95	2854.45	5	5859.86	5749.27	5	1919.20	2300.39
10	2722.83	2816.20	10	5813.70	5665.96	10	1807.42	1894.69
30	2621.78	2691.11	60	5372.24	5223.72	30	1560.02	1571.60
60	2477.076	2519.13	120	4887.15	4744.91	60	1431.62	1478.19
120	2211.49	2207.63	240	4046.26	3915.65	120	1339.92	1333.94
1590	146.21	92.85	1440	638.45	605.99	240	1209.61	1096.93
			2880	80.37	102.20	1440	437.75	291.89
						2880	129.28	122.97
Patient 4			Patient 5			Patient 6		
$\mathrm{Dose}_{\mathrm{A}}=2.82 \mathrm{mg}$ protein			Dose ${ }_{\text {A }}=2.14 \mathrm{mg}$ protein,			Dose $_{\text {A }}=2.30 \mathrm{mg}$ protein		
$\mathrm{C}_{\mathrm{R} 0}=5.73 \times 10^{14}$ antigens $/ \mathrm{mL}$			$\mathrm{C}_{\mathrm{R} 0}=5.73 \times 10^{14}$ antigens $/ \mathrm{mL}$			$\mathrm{C}_{\mathrm{R} 0}=5.73 \times 10^{14}$ antigens $/ \mathrm{mL}$		
$\mathrm{CL}_{\mathrm{CSF}}=13 \mathrm{~mL} / \mathrm{h}, \mathrm{n}=7, \mathrm{~V}=140 \mathrm{~mL}$			$\mathrm{CL}_{\mathrm{CSF}}=17 \mathrm{~mL} / \mathrm{h}, \mathrm{n}=7, \mathrm{~V}=140 \mathrm{~mL}$			$\mathrm{CL}_{\mathrm{CSF}}=40 \mathrm{~mL} / \mathrm{h}, \mathrm{n}=6, \mathrm{~V}=140 \mathrm{~mL}$		
$\begin{aligned} & \hline \text { Time } \\ & (\mathrm{min}) \end{aligned}$	Experiment $(\mathrm{kBq} / \mathrm{g})$	Model (kBq/g)	$\begin{aligned} & \text { Time } \\ & (\mathrm{min}) \end{aligned}$	Experiment $(\mathrm{kBq} / \mathrm{g})$	$\begin{aligned} & \text { Model } \\ & (\mathrm{kBq} / \mathrm{g}) \end{aligned}$	$\begin{aligned} & \hline \text { Time } \\ & (\mathrm{min}) \end{aligned}$	Experiment $(\mathrm{kBq} / \mathrm{g})$	$\begin{aligned} & \text { Model } \\ & (\mathrm{kBq} / \mathrm{g}) \end{aligned}$
5	2173.60	1440.19	5	12615.15	3355.44	5	2361.31	1899.20
15	671.03	771.66	10	4125.15	3228.03	15	1754.15	1281.24

30	613.20	664.87	20	3008.86	3124.91	30	823.47	1021.83
60	608.06	641.95	35	2916.28	3025.75	60	534.29	833.28
90	603.34	626.68	60	2789.34	2879.84	120	423.95	621.90
120	598.65	612.04	120	2506.81	2540.88	240	319.99	389.73
300	571.29	535.15	360	1635.31	1560.73	510	154.92	197.05
1440	424.79	278.50	720	861.63	774.08	1620	12.53	52.22
2880	292.16	154.71	1080	453.99	409.73	3000	6.06	19.39
			1440	239.21	236.01			
Patient 7			Patient 8			Patient 9		
$\begin{gathered} \text { Dose }_{\mathrm{A}}=0.22 \mathrm{mg} \text { protein, } \\ \mathrm{C}_{\mathrm{R} 0}=5.73 \times 10^{14} \text { antigens } / \mathrm{mL}, \\ \mathrm{CL}_{\mathrm{CSF}}=17 \mathrm{~mL} / \mathrm{h}, \mathrm{n}=1, \mathrm{~V}=140 \mathrm{~mL} \end{gathered}$			Dose $_{\mathrm{A}}=4.44 \mathrm{mg}$ protein, $\mathrm{C}_{\mathrm{R} 0}=5.73 \times 10^{14}$ antigens $/ \mathrm{mL}$ $\mathrm{L}_{\mathrm{CSF}}=30 \mathrm{~mL} / \mathrm{h}, \mathrm{n}=11, \mathrm{~V}=140 \mathrm{~mL}$			$\begin{gathered} \text { Dose }_{\mathrm{A}}=3.94 \mathrm{mg} \text { protein, } \\ \mathrm{C}_{\mathrm{R} 0}=5.73 \times 10^{14} \text { antigens } / \mathrm{mL}, \\ \mathrm{CL}_{\mathrm{CSF}}=25 \mathrm{~mL} / \mathrm{h}, \mathrm{n}=13, \mathrm{~V}=100 \mathrm{~mL} \end{gathered}$		
$\begin{aligned} & \text { Time } \\ & (\min) \end{aligned}$	Experiment $(\mathrm{kBq} / \mathrm{g})$	$\begin{aligned} & \text { Model } \\ & (\mathrm{kBq} / \mathrm{g}) \end{aligned}$	$\begin{aligned} & \text { Time } \\ & (\min) \end{aligned}$	Experiment $(\mathrm{kBq} / \mathrm{g})$	$\begin{aligned} & \hline \text { Model } \\ & (\mathrm{kBq} / \mathrm{g}) \end{aligned}$	$\begin{aligned} & \text { Time } \\ & (\mathrm{min}) \end{aligned}$	Experiment ($\mathrm{kBq} / \mathrm{g}$)	$\begin{aligned} & \text { Model } \\ & (\mathrm{kBq} / \mathrm{g}) \end{aligned}$
5	612.01	265.54	5	5098.42	2152.96	5	6247.40	1454.54
15	612.01	221.93	15	4206.85	2012.72	15	2951.15	507.24
30	461.08	185.46	30	2284.32	1875.37	30	1024.30	399.00
60	156.55	154.60	60	1221.43	1629.44	60	416.85	381.92
120	152.60	134.72	120	514.06	1235.01	240	136.50	321.91
210	110.51	118.81	480	73.91	314.28	1020	32.55	190.92
1290	11.42	33.39	1140	12.62	111.10	1500	16.78	151.12

* n is the number of tumor cell layers (defined in Eq. A5). Other parameters are the same as in Fig. 2 of the main text.

Appendix

In the CSF space, we considered,
(A) Binding/dissociation between antibodies and antigens

A free antibody A binding to an antigen R on the surface of tumor cells satisfies,

$$
\begin{equation*}
\mathrm{A}+\mathrm{R} \underset{\mathrm{k}_{-A R}}{\stackrel{\mathrm{k}_{A R}}{\leftrightarrows}} \mathrm{AR} \tag{A1}
\end{equation*}
$$

where $A R$ is the bound antibody to antigen, k_{AR} is the association rate constant and $\mathrm{k}_{\text {-AR }}$ the dissociate rate constant, respectively. Mass balance for the free, bound antibodies and antigens gives,

$$
\begin{align*}
& \frac{\mathrm{dC}_{\mathrm{AR}}}{\mathrm{dt}}=\mathrm{k}_{\mathrm{AR}} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{R}}-\mathrm{k}_{-\mathrm{AR}} \mathrm{C}_{\mathrm{AR}} \tag{A2}\\
& \frac{\mathrm{dC}_{\mathrm{A}}}{\mathrm{dt}}=\mathrm{k}_{-\mathrm{AR}} \mathrm{C}_{\mathrm{AR}}-\mathrm{k}_{\mathrm{AR}} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{R}} \tag{A3}\\
& \frac{\mathrm{dC}_{\mathrm{R}}}{\mathrm{dt}}=\mathrm{k}_{-\mathrm{AR}} \mathrm{C}_{\mathrm{AR}}-\mathrm{k}_{\mathrm{AR}} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{R}} \tag{A4}
\end{align*}
$$

where $\mathrm{C}_{\mathrm{A}}, \mathrm{C}_{\mathrm{AR}}$ and C_{R} are the concentrations of the free antibody A , bound antibody or antigen AR , and the tumor antigen R , correspondingly.

Tumor cells with diameter D_{T} are assumed to exist at the surface of the CSF compartment with surface area S and the binding of antibodies to tumor antigens only occurs at the surface. If the CSF bulk flow can wash away the unbound antibodies at rate $\mathrm{CL}_{\mathrm{CSF}}$, for an antibody infusion rate of $\mathrm{INF}_{\mathrm{A}}$, mass conservation for free antibodies gives,

$$
\begin{equation*}
\frac{d C_{A}}{d t}=\frac{1}{V} I N F_{A}-\frac{C L_{C S F}}{V} C_{A}+\frac{n S D T}{V}\left(k_{-A R} C_{A R}-k_{A R} C_{A} C_{R}\right) \tag{A5}
\end{equation*}
$$

where V is the CSF volume. The tumor occupied volume $\mathrm{nSD}_{\mathrm{T}}$ (n is the number of tumor cell layers) at the surface of the CSF space is much less than V . The first term on the right
hand side of Eq. A5 represents the increase rate of the free antibody by infusion $\left(\mathrm{INF}_{\mathrm{A}}=\right.$ 0 under single bolus and split dosing administrations), the second term is the clearance rate of the free antibody by the CSF bulk flow, and the third term indicates the changing rate of the free antibody due to binding/dissociation to/from tumor antigens at the surface of the CSF space.

The initial conditions for Eqs. A2, A4 and A5 are,

$$
\begin{equation*}
\mathrm{t}=0, \mathrm{C}_{\mathrm{A}}(0)=\mathrm{C}_{\mathrm{A} 0}, \mathrm{C}_{\mathrm{AR}}(0)=0, \mathrm{C}_{\mathrm{R}}(0)=\mathrm{C}_{\mathrm{R} 0} \tag{A6}
\end{equation*}
$$

where $\mathrm{C}_{\mathrm{A} 0}=\frac{\operatorname{Dose}_{A}}{V}$ is the initial concentration of antibodies when single bolus with dosage Dose $_{A}$ is injected. For continuous infusion, $\mathrm{C}_{\mathrm{A} 0}=0$, while for split dosing, $\mathrm{C}_{\mathrm{A}}\left(\mathrm{t}^{*}\right)$ $=\frac{1}{n_{s}} \frac{\operatorname{Dose}_{\mathrm{A}}}{V}, \mathrm{n}_{\mathrm{s}}$ is the number of dosing, $\mathrm{t}^{*}=\mathrm{i} \times$ interval time between $\operatorname{dosing}(\mathrm{i}=0,1$, $2, \ldots \mathrm{n}_{\mathrm{s}}-1$). The $4^{\text {th }}$ order Runge-Kutta method (any numerical method book such as the one listed in the end) was used to solve Eqs. A2, A4 and A5 with initial conditions in Eq. A6. The convergence criterion was 10^{-10} in the relative magnitude of residuals for $\mathrm{C}_{\mathrm{A}}(\mathrm{t})$, $\mathrm{C}_{\mathrm{AR}}(\mathrm{t})$, and $\mathrm{C}_{\mathrm{A}}(\mathrm{t})$.

(B) Decay of isotope

The decay of radioactive isotope satisfies,

$$
\begin{equation*}
\mathrm{I} \xrightarrow{\mathrm{k}_{\mathrm{I}}} \mathrm{I}^{\prime}+\alpha \tag{A7}
\end{equation*}
$$

where I^{\prime} is the decayed isotope. k_{I} is the decay constant of isotope $\left(k_{I}=\ln 2 / t_{1 / 2-I}\right), t_{1 / 2-I}$ is the half-life of the isotope. The decay rate of isotope is,

$$
\begin{equation*}
\frac{\mathrm{dC}_{\mathrm{I}}}{\mathrm{dt}}=-\mathrm{k}_{\mathrm{I}} \mathrm{C}_{\mathrm{I}} \tag{A8}
\end{equation*}
$$

Initial condition for Eq. A8 is,

$$
\begin{equation*}
\mathrm{t}=0, \mathrm{C}_{\mathrm{I}}(0)=\mathrm{C}_{\mathrm{I} 0} \tag{A9}
\end{equation*}
$$

where C_{I} is the specific activity of an isotope, $C_{I 0}$ is the initial specific activity of an isotope. The solution of Eq. A8 with the initial condition Eq. A9 is,

$$
\begin{equation*}
C_{I}(t)=C_{I 0} \exp \left(-k_{I} t\right) \tag{A10}
\end{equation*}
$$

Finally, the radioactivity on free and bound antibodies $\mathrm{C}_{\mathrm{IA}}, \mathrm{C}_{\mathrm{IAR}}$ in the CSF are,

$$
\begin{align*}
& \mathrm{C}_{\mathrm{IA}}=3.7 \times 10^{7} \cdot \mathrm{C}_{\mathrm{A}} \cdot \mathrm{MW} \cdot \mathrm{C}_{\mathrm{I}} / \rho_{\mathrm{CSF}}(\mathrm{kBq} / \mathrm{g}) \tag{A11}\\
& \mathrm{C}_{\mathrm{IAR}}=3.7 \times 10^{7} \cdot \mathrm{C}_{\mathrm{AR}} \cdot \mathrm{MW} \cdot \mathrm{C}_{\mathrm{I}} / \rho_{\mathrm{T}}(\mathrm{kBq} / \mathrm{g}) \tag{A12}
\end{align*}
$$

where C_{A} and C_{AR} are the concentrations of the free and bound antibodies obtained from Eqs. A2-A5. They are in the unit of M, and C_{I} obtained from Eq. A10 is in the unit of $\mathrm{mCi} / \mathrm{mg} . \rho_{\mathrm{CSF}}$ is the density of $\mathrm{CSF}, \rho_{\mathrm{T}}$ the density of tumor tissue, and MW is the molecular weight of the antibody.

From Eqs.A2-A6, we can see that time-changing concentrations $C_{A}(t), C_{A R}(t)$, and $C_{R}(t)$ depend on association/dissociation rate constants $k_{A R}$ and $k_{-A R}$, or the affinity of the antibody to the antigen $\mathrm{K}_{\mathrm{d}}=\frac{k_{-A R}}{k_{A R}}$, the CSF volume (V), the CSF bulk flow rate $\left(\mathrm{CL}_{\mathrm{CSF}}\right)$, the tumor occupied volume $\left(\mathrm{SD}_{\mathrm{T}}\right)$, the tumor antigen concentration $\left(\mathrm{C}_{\mathrm{R} 0}\right)$, the amount (dosage) of the antibody administered $\left(\right.$ Dose $\left._{A}\right)$, antibody administration schedules (single bolus: $\mathrm{C}_{\mathrm{A} 0}=\frac{\operatorname{Dose}_{A}}{V}$; continuous infusion: $\mathrm{INF}_{\mathrm{A}}$; split dosing: $\mathrm{C}_{\mathrm{A}}\left(\mathrm{t}^{*}\right)=\frac{1}{n_{s}} \frac{\operatorname{Dose}_{A}}{V}$). From Eqs. A8-A12, we can see that in addition to these kinetic and transport parameters, the radioisotope-labeled free antibody concentration $\mathrm{C}_{\mathrm{IA}}(\mathrm{t})$ and the bound antibody concentration $\mathrm{C}_{\mathrm{IAR}}(\mathrm{t})$ depend on the specific activity of isotope $\left(\mathrm{C}_{\mathrm{I} 0}\right)$, and the isotope half-
life $\left(\mathrm{t}_{1 / 2-\mathrm{I}}\right)$ as well.
After solving for the $\mathrm{C}_{\mathrm{IA}}(\mathrm{t})$ and $\mathrm{C}_{\mathrm{IAR}}(\mathrm{t})$, the area under the C_{IA} vs. time curve $\operatorname{AUC}\left(\mathrm{C}_{\mathrm{IA}}\right)$ and the area under the $\mathrm{C}_{\mathrm{IAR}}$ vs. time curve $\mathrm{AUC}\left(\mathrm{C}_{\mathrm{IAR}}\right)$ can be calculated by the following integrations:

$$
\operatorname{AUC}\left(\mathrm{C}_{\mathrm{IA}}\right)=\int_{0}^{\infty} \mathrm{C}_{\mathrm{IA}}(\mathrm{t}) \mathrm{dt} \text { and } \operatorname{AUC}\left(\mathrm{C}_{\mathrm{IAR}}\right)=\int_{0}^{\infty} \mathrm{C}_{\mathrm{IAR}}(\mathrm{t}) \mathrm{dt}
$$

Because the integrands $\mathrm{C}_{\mathrm{IA}}(\mathrm{t})$ and $\mathrm{C}_{\mathrm{IAR}}(\mathrm{t})$ depend on the above described kinetic and transport parameters, $\operatorname{AUC}\left(\mathrm{C}_{\mathrm{IA}}\right)$ and $\mathrm{AUC}\left(\mathrm{C}_{\mathrm{IAR}}\right)$ also depend on these parameters. By choosing the optimal values for these parameters in the RIT, we can maximize $\operatorname{AUC}\left(\mathrm{C}_{\mathrm{IAR}}\right)$ and minimize $\mathrm{AUC}\left(\mathrm{C}_{\mathrm{IA}}\right)$.

Reference for the Runge-Kutta method:

Chapra SC and Canale RP. Numerical Methods for Engineers. Third Edition, WCB/McGraw-Hill, Boston, 1998.

