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OPPORTUNITIES 

In what follows, we discuss a number of opportunities for AI towards improved 

image generation (part A), image analysis (part B), and radiopharmaceutical therapies 

(RPTs) (part C). We also refer the reader to a special AI issue of PET clinics (44,45) 

edited by and with contributions from a number of SNMMI AI Task force members, with 

different chapters elaborating a number of the below-mentioned dimensions. 

Part A: Opportunities For AI Toward Improved Image Generation 

    Image Reconstruction. Deep learning models, either standalone or as part of a 

traditional reconstruction framework, can lead to significant improvements in image 

quality while achieving reductions of injected activities and/or scan durations. Recent 

review papers present detailed discussions of different deep learning approaches for 

image reconstruction (5,46). Standalone AI-based image reconstruction models may 

also learn the imaging physics of mapping projection data to images. These models are 

expected to require large volumes of training data comprising paired sets of perfect 

“ground truth” reconstructed images and raw data, and their development is an 

opportunity ripe for exploration.  

Hybrid approaches may be a practical area of concerted effort, combining neural 

networks with traditional approaches. In ‘unrolled iterative’ reconstruction methods, a 

traditional reconstruction framework may be combined with a neural network--for 

instance an artifact noise reduction model run inside the iterative reconstruction loop. 

These methods are able to take advantage of known imaging physics, statistics, and 

data corrections to optimize the reconstruction. AI models can also be utilized to learn 

the best regularization parameters that have been traditionally challenging to optimize in 

Bayesian (regularized) image reconstruction methods. 

 

    Data Corrections (Attenuation, Scatter, Motion, Denoising). A number of AI-based 

attenuation and scatter correction methods have been reviewed elsewhere (6). 

Attenuation correction (AC) in SPECT and PET is a prerequisite for quantification and 

has been shown to be beneficial for visual interpretation tasks. However, AC requires 

an attenuation map, typically obtained from a CT scan. AI-based methods are promising 

for AC without requiring CT scans (28,47) and are demonstrating promise in both 

detection (48) and quantification (49) applications. AI based methods have shown 

significant potential to discover patterns in sinogram data or images that enable 

compensation for attenuation and scatter. For example, CNNs can learn quantitative 

and spatial associations between features in uncorrected PET images and features in 

paired CT images, allowing algorithms to predict CT images directly from uncorrected 

PET images (50). Or, data corrections can be directly applied without an intermediate 

step of CT generation (51). AI-based AC can help avoid the increased radiation dose 

https://paperpile.com/c/yvEkng/RWxU4+ArU94
https://paperpile.com/c/yvEkng/RWxU4+ArU94
https://paperpile.com/c/yvEkng/4lIc
https://paperpile.com/c/yvEkng/4lIc
https://paperpile.com/c/yvEkng/4lIc


THE JOURNAL OF NUCLEAR MEDICINE • Vol. 64 • No. 2 • February 2023  Saboury et al. 

 

associated with CT-based AC and quantitation errors due to misalignment between the 

CT image and the PET or SPECT image. This is of particular relevance in multi-time-

point acquisitions. AI-based AC is particularly advantageous for PET/MR systems, 

which lack in-built CT scanning capabilities as well as standalone PET or SPECT 

systems (52).  

Deep learning models could be used for generating total scatter profiles 

(including single and multiple scatters) directly from emission and attenuation sinograms 

(53). The problems of scatter correction and attenuation correction can even be tackled 

jointly using AI by training end-to-end models that map uncorrected input emission data 

to attenuation and scatter corrected outputs, early results for which have been shown to 

be promising in PET (54). Yet another promising emerging area of research involves AI 

models for generating displacement fields required to perform motion-compensated 

image reconstruction for organs affected by respiratory or cardiac motion.  

AI methods are also promising for improving the resolution and noise 

characteristics of raw sinogram datasets. In particular, AI models have been used 

towards sinogram denoising (55). 

 

     Post-Reconstruction Image Enhancement. Recent review papers have discussed the 

significant opportunities to use AI for further enhancing reconstructed nuclear medicine 

images (7). Typically, most AI models for post-reconstruction enhancement of images 

seek to achieve noise reduction or resolution recovery. Unlike image reconstruction 

approaches, which require access to raw sinogram or list-mode data, post-

reconstruction enhancement only uses images for training and validation. Images are 

more readily available to most users than raw data. Additionally, there are growing 

public repositories that store medical image data but access to raw data is limited. As a 

result, AI models for post-reconstruction enhancement are more practical to implement 

for a larger base of users than AI-based image reconstruction models. Initial attempts 

for AI-based image denoising and deblurring in this field employed supervised learning 

models, that rely on matched pairs of corrupt (i.e., noisy and/or low-resolution) and 

clean (i.e., low-noise/noiseless for the denoising problem and high-resolution for the 

deblurring problem) images for model training. Paired clinical datasets are not readily 

available thereby limiting the overall utility of supervised image enhancement 

techniques, despite their high best-case performance. As a result, a majority of recent 

efforts in this area have focused on developing unsupervised techniques that use only 

corrupt images for training and weakly supervised techniques that use unpaired 

cleaned/corrupt images from separate cohorts. While these image-enhancement 

methods present strong promise, a key requirement for clinical application will be 

evaluation on clinical tasks. Current evaluation strategies often use fidelity-based 

metrics (such as structural similarity index), but studies are showing that this may not 

correlate with performance on clinical tasks (56). Thus, observer-based studies that 
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focus on task performance are recommended.  

Part B: Opportunities For AI Towards Improved Image Analysis 

      

    Multiple-Study Image Alignment. It is expected that temporal analysis of imaging 

changes over time will become increasingly important in the era of enhanced image 

analysis. In order to compare information from multiple types of imaging examinations 

(both structural and functional) and multiple time points, a first critical step is appropriate 

alignment of the images with each other. During different exams the patient may be 

positioned slightly differently on the examination table. Physiological motion and 

changes in position of the internal organs particularly the heart, diaphragm, and bowel 

also occur. Improving the efficiency and reliability of registration is an area of 

opportunity for AI. Specifically, multiple region-of-interest registration and mass 

preserving deformable registration are areas that have proved challenging with existing 

methods. Neural networks have also shown promise in rapidly evaluating registration 

performance, which may be helpful in quality control in the clinic, even with more 

traditional and existing registration methods (57). 

 

    Organ and Lesion Delineations. Rapid and accurate selection of a specific lesion or 

organ within an imaging volume will be increasingly important to clinicians at the point of 

care in order to perform more advanced quantifications or to better follow a patient’s 

disease over time. There is an opportunity for AI to make the process of organ and 

lesion selection faster and more accurate. Neural networks may provide more flexibility 

and accuracy compared to threshold approaches, for instance through incorporating 

user input on accuracy of the selection over time. It is expected that numerous AI 

solutions will emerge that aim to make routine organ and lesion delineation more readily 

available in the clinic in order to empower more advanced image analytics (58). As an 

example, routine quantification of metabolic tumor volume (MTV) from FDG PET/CT 

images, known to be superior to SUV quantification for a number of 

predictive/prognostic tasks for certain cancers, is expected to be routinely enabled by 

such methods (e.g. for lymphoma patients). These methods can also be extended to 

quantification of molecular tumor volume from other radiopharmaceuticals.  

 

    Imaging Biomarkers and Beyond. Over the last two decades, the extraction of image 

biomarkers from nuclear medicine images has been the focus of numerous studies. 

One of the simplest metrics has been the SUV or change in SUV with treatment as 

formalized by the PERCIST 1.0 metrics. The imaging biomarker field, is broadly a part 

of the domain known today as “radiomics”, and relied until recently on several 

sequential steps once images are reconstructed and collected for analysis: lesions, 

tumours or organs detection and segmentation (the contours in 2D or volumes in 3D are 
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determined), followed by characterization (a number of handcrafted features are 

calculated to describe the segmented volume), in order to finally be exploited in a 

modeling step. This modeling step consists of selecting a subset of features for their 

relevance regarding the task at hand (e.g. predicting outcome or differentiating between 

benign and malignant lesions) and combining them into a multiparametric model. 

Despite numerous studies and promising results, advanced radiomics has not been 

widely translated to clinical practice due to several intrinsic limitations: (i) lack of 

automation (especially for the detection and segmentation of lesions), (ii) lack of 

standardization (which now has been significantly addressed by the Image Biomarker 

Standardization Initiative, IBSI, with further ongoing efforts), (iii) harmonization issues 

(some handcrafted features are notoriously sensitive to numerous factors including 

scanner device characteristics and performance, reconstruction algorithms and settings 

and acquisition protocols, which makes radiomic models perform poorly in a real 

heterogenous setting such as for example multicenter studies), and (iv) explainability 

and interpretability issues (radiomic features are often quite unintelligible for end users, 

so models combining several of them can be seen as an untrustworthy “black box”).  

Over the last few years, there have been several developments that have 

addressed these issues. The efforts by the IBSI to standardize both features and the 

workflow have made published studies more comparable. The rise of techniques based 

on deep neural networks has already provided solutions for the lack of automation (e.g. 

methods based on the U-Net architecture are now providing more effective, automated 

detection and delineation of lesions in PET images) and may also improve modeling 

and harmonization issues, provided appropriate training strategies are implemented and 

large enough datasets for training are made available. Given their impressive 

performance obtained in various computer vision applications, it is expected that the 

usual radiomics workflow currently implemented as sequential steps and the extraction 

of handcrafted features from delineated lesions might end up being replaced by end-to-

end approaches relying on deep neural networks using as input not the delineated 

tumor volume but simply the entire PET image to learn relevant features contained in 

the images and derive its output. Though it is possible that these networks may be 

expanded to additionally incorporate certain handcrafted features (e.g. shape features) 

that may not be easily captured by neural networks with limited training. Overall, 

“handcrafted” and “deep” radiomics are areas of significant ongoing activity. 

      

    Kinetic Modeling. Quantitative and qualitative improvements in reconstructed 

dynamic images directly translate to enhanced accuracy in the spatial maps of kinetic 

micro- and macro-parameters (59). Particularly, because of the characteristics of tracer 

dynamics, there are commonly some short static frames in a dynamic PET scan. These 

short frames lead to noisy PET images which pose a critical challenge to robust kinetic 

modeling and parametric image computation. With the superior performance of deep 
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learning-based image reconstruction, particularly for low count rates (i.e. short frames), 

the resulting parametric images can have enhanced accuracy. In addition, with the 

flexibility of deep neural networks to map complex functions, one can synthesize high 

quality parametric images from low quality parametric images (60), or directly 

reconstruct parametric images from raw data (61) leading to even better image quality. 

Application of AI in the context of kinetic modeling as applied to large-axial-FOV or total-

body PET is another exciting frontier (18). 

Part C: Opportunities For AI Toward Improved Radiopharmaceutical Therapies 

    Personalized Dosimetry. There are multiple steps within dosimetry as applied to 

RPTs that will be readily enabled and enhanced for routine deployment via AI methods. 

To integrate multiple time-point imaging data, registration of images, as well as 

segmentation of organs and tumors is required. These processes can be time-

consuming, cumbersome, and pose a practical-limitation to routine dosimetry. AI might 

improve the accuracy of whole-body multiple time-point image registration (57), and has 

been shown to be capable of automatically segmenting organs at risk and target tumors 

(62). 

Following multi time-point SPECT acquisition, activity concentrations of various 

organs and tissues are plotted over time to obtain time activity curves (TAC). Due to the 

limited number of time-points available, these TACs are fit to a curve, extrapolating 

beyond the final time-point, and then integrated to yield the cumulated activity, or time 

integrated activity (TIA). AI based curve fitting could eventually reduce the number of 

time points needed (25). 

Converting the TIA map (macro-level radiopharmaceutical gamma signature) to 

tissue-level effective dose of the particles (electron or alpha particle) can involve 

complex modeling of particle trajectory, its interaction with matter, and micro-level 

sensitivity of the biological tissue. This could be an opportunity for AI because it is 

currently extremely cumbersome and computationally intensive (63). 

The cumulative effect of each treatment session is a function of dose deposition 

in each session, time-interval between the sessions, and other biological conditions of 

the patient (tissue sensitivity, repair capacity, immune system response, etc). There is 

an important potential role for AI in the creation of this comprehensive patient dose 

profile and making it practically and ubiquitously available. This profile could aid the 

nuclear medicine physician in improved adaptive treatment planning, through optimal 

time-interval determination and dose prescription, as well as utilization of adjunct 

measures such as chemotherapy and immunotherapy. Specifically, post-treatment dose 

deposition quantification in target lesions will ensure sufficient therapy and identify the 

under-treated subsections for “proactive mitigations”, such as locoregional therapies 

(interventional oncology and radiation oncology) as well as augmented therapy 

(adjuvant RPT or chemotherapy). Post-treatment dose deposition quantification in 
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organs at risk (OAR) could guide optimal treatment planning while minimizing normal 

organ damage. Such approaches can be especially enhanced through utilizing digital 

twins, as described next. 

 

    Digital Twins. A digital twin is the numeric representation of a patient spanning his or 

her entire life. The patient’s digital twin can be (i) updated with real-time data (e.g. 

cumulative radiation dose) reflecting history and current condition of the patient, and (ii) 

can be used for simulations to aid physicians in complex treatment planning scenarios. 

This concept, first coined by Michael Grieves, has a proven track record of success in 

modeling complex industrial engineering applications. Radiopharmaceutical therapies 

(RPTs) have key factors that distinguish their planning from external radiation therapy 

and increase their complexity. Examples include distinct pharmacokinetics, dose rates, 

temporal scales (including temporal heterogeneity), spatial scales (including spatial 

heterogeneity), and linear energy transfer (LET) rates. 

The theranostic digital twin (TDT) incorporates a combination of structural 

imaging and dynamic molecular imaging to produce a pharmacokinetic biodistribution 

model that is specific to a particular patient—quantifying normal organ systems biology 

and tumor biology modeling. The result is the ability to model normal tissue complication 

probability and tumor control probability (TCP) based on the modeled biological 

effective dose. TCP computation is a dynamic interplay between dose rate 

pharmacokinetics, cell type, genomics, DNA repair pathways and other factors such as 

hypoxia. The TDT coupled with appropriate computational tools can be used for 

predictive dose modeling; e.g. a model can be personalized based on pre- and/or intra-

therapy molecular imaging. Different injection strategies and intervals can be explored. 

Mitigation strategies for suboptimal dose delivery can also be pursued such as adaptive 

dose planning, augmentation with locoregional therapy (e.g. ablative therapy or external 

radiation therapy), or adjuvant systemic strategies such as chemotherapy, 

immunotherapy, and CAR-T therapy. 

 Each time a patient receives an RPT, the TDT can be updated to record the 

acquired information related to his or her healthy and diseased tissues. This data could 

be stored locally, on a patient’s personal device, or in a cloud resource such as a 

healthcare exchange platform so that it could be dynamically updated as the patient 

receives subsequent procedures. In addition to practical considerations such as nuclear 

medicine treatment and re-treatment planning, the TDT could be used over time to 

improve subsequent image reconstructions. Prior image labeling tasks can also be 

catalogued by the digital twin to optimize subsequent follow up exam evaluation and 

interpretation efficiency by nuclear medicine physicians. 

The TDT may greatly improve the reliability of quantification measures compared 

to the current standard of practice, particularly radiation dose over time. The digital twin 

is a next evolution in personalizing medical imaging and will be aided by AI: as outlined 
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earlier, AI can significantly assist in enabling rapid and reliable dosimetry calculations; 

further the complex biological models can be replicated (with sufficient training) using 

appropriate neural networks.  

CHALLENGES FOR DEVELOPMENT, VALIDATION, DEPLOYMENT, AND 

IMPLEMENTATION 

 

On balance with the potential opportunities for AI to impact the field of nuclear 

medicine, there are also obstacles. In this section, we review current challenges 

effecting development, validation, regulation, dissemination/implementation, and public 

trust. 

Development Challenges 

     Data. One of the greatest impediments to AI research and development in medical 

imaging is the availability of data, which should be findable, accessible, interoperable, 

and reusable (FAIR) (64). Current publicly available data is of limited volume, from 

relatively few institutions, with a relatively narrow range of disease representations. At 

the time of this article, there are only 2346 publicly available PET imaging subjects in 

the cancer imaging archive (TCIA), which cover predominantly head and neck, lung, 

and breast cancer. There is also a need for an increased ability for patients to easily 

and securely share their medical data and to assure appropriate patient privacy 

protections. However, having access to imaging and clinical data is not enough. There 

is no readily available process of converting big data (data lakes) into more organized 

datasets (data warehouses) in medicine (65). In order to be useful for the development 

of AI applications, clinical and imaging data must be curated to include standardized 

descriptors (metadata—including highly clinically-relevant data such as survival), labels, 

and must be appropriately deidentified (AI readiness).  

Data should be able to be compared and evaluated across patient populations, 

diseases institutions, and among various vendors. Raw imaging data, which is richer 

than reconstructed data, is almost always purged on a regular basis due to its sheer 

size requirements and proprietary nature, even in modern clinical and research 

archives. There is no universal format for list-mode data (66). Quality and variability of 

input data are critically important and may affect outcomes, so data sets of reasonably 

uniform quality are likely of great value, though it can be argued that the most robust AI 

methods would function well on a diverse range of data inputs of differing qualities. 

 

     Optimal Network Architecture. Many published works on artificial intelligence in 

medical imaging employ transfer learning from CNNs trained on non-medical 2-

dimensional imaging data(67). Dedicated medical imaging datasets are potentially 
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preferable, although current available sets remain small in comparison to the non-

medical imaging datasets. This limitation was highlighted as a key challenge in the 2018 

National Institutes of Health roadmap (64).  

 Much of nuclear medicine data have 3 dimensions or more (e.g. x, y, z and 

sometimes time). AI architecture designed to incorporate additional dimensions (such 

as those designed for video recognition tasks has shown promise toward incorporating 

contextual information in other areas. However, there is limited literature available and 

video CNN training can be orders of magnitude more computationally challenging (68). 

Analyses including registered CT and MRI data with nuclear medicine may also prove 

informative.  

More complex architectures will also need to be considered. Fusion architecture 

may also be needed, such as paired data to incorporate deep natural language 

processing CNNs with computer vision CNNs for certain tasks (69). Federated and 

swarm learning approaches in medical imaging that are privacy-preserving and secure 

while addressing issues of network latencies will be needed to train large-scale task-

specific datasets (70,71). 

 

     Measurement and Communication of Uncertainty. There is a need for estimation and 

reporting of uncertainty with each AI system output in medicine. Classifications often 

provide an output category without conveying the uncertainty of that assignment. In 

cases where the estimation of uncertainty is conveyed, there are minimal assurances 

that the estimation itself is accurate. Without these metrics, automation bias risk is left 

unchecked (35). AI applications in nuclear medicine must embrace these principles, 

which have proved helpful to other areas (72). 

 

     Clinically Impactful Use Cases. Developers of AI need help to understand the most 

clinically important needs where AI could provide added utility. There is currently a 

mismatch between the use cases explored by many researchers or vendors and the 

clinical needs. This is, to a large degree, related to the limited availability of public 

datasets. A forum for improved direction including the most viable areas to expend 

development resources informed by expert professionals in the field of nuclear medicine 

does not yet exist. 

 

     Team Science. There is limited awareness of the potential for AI in nuclear medicine 

by much of the computer science development community. Nuclear medicine AI 

developers need engagement opportunities (37). Collaboration among scientists in 

many domains is needed in order to realize the scope of potential. An environment of 

competition to serve as a launchpad for attracting talent and stimulating interdisciplinary 

approaches is yet to be established in the field of nuclear medicine AI. 
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Evaluation Challenges 

 

     Performance Profiling Through Task-Based Evaluations. We need to understand 

when, and if possible, why AI software fails (failure mode profiling). Although AI models 

may help clinicians to identify novel features of clinical importance (73), AI models can 

also make decisions based on irrelevant or non-specific features. While in some 

instances failure mode profiling could be aided by AI explainability, tackling the 

explainability hurdle alone is not sufficient (74). Controversy remains in the literature for 

saliency maps (popular methods highlighting ‘relevant’ portions of images for specific 

tasks) as to how effective and beneficial they are (75) or even whether understanding 

CNN failure modes is practical in high stakes decisions (41). One approach to address 

this issue is rigorous evaluation on populations of patients and on clinical tasks. The 

task-based evaluation paradigm (population-based or personalized) provides for an 

approach to address these challenges; however strategies to conduct such evaluation 

are still being explored (4,37). Population-based evaluation must be further augmented 

by investigating incidents when failure occurs specific to an individual patient 

(personalized evaluation). 

 Bias and discrimination are also important issues difficult to evaluate. 

Approaches to evaluate AI software for known or unknown biases are important (76). 

 

     Guidelines for Validation. There are few guidelines for appropriate initial and 

continuous validation of AI software in medicine. There is a need for a framework for the 

evaluation of AI software designed for use in nuclear medicine in the real world. A proof-

of-concept should be provided including an objective, rationale, study design, and 

output measures. Well-defined testing procedures and reference standards must be 

available for the tasks at hand. It must be realized that a balance exists between moving 

AI approaches forward in a timely manner and their perfection in broad populations and 

a wide range of clinical use cases. 

 

     Multi-Center Clinical Trial Network. There is a need for a clinical trial network 

composed of multiple institutions to cross-validate AI software among different clinical 

environments. 

Ethical, Regulatory, and Legal Ambiguities 

     Ethical Aspects. Ethical issues related to AI systems in nuclear medicine are only 

beginning to be defined. 

Although the classic principles of medical ethics (autonomy, non-maleficence, 

beneficence, and justice) are well established, the complexity of modern clinical 

decision-making requires reconciliation of conflicting principles. Ethical dilemmas could 

be more challenging in the presence of AI devices in healthcare. One reason for this is 
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due to the role of patient data in the genesis of new AI software and the complexities of 

informed consent. Another issue is that insinuated replication of historical biases and 

unfairness embedded in training data could be imparted in the produced AI device. 

There are also issues related to the appropriate agency of the AI device, potential 

unintended consequences it presents, and the inherent opaqueness of some of the 

useful algorithms.  

Furthermore, the scope of ethical dilemmas is broader than the traditional dyadic 

relation between physician and patients. There are more stakeholders sharing in both 

the benefits and the burdens. There is a need for inclusion and active participation of all 

stakeholders in order to understand how to best resolve ethical questions.  

Finally, there are legitimate concerns about the impact of these technologies on 

healthcare disparities on one hand and their trustworthiness on the other. There are no 

established guidelines for the appropriate inclusivity of AI systems in terms of how to 

address bias, discrimination, or other issues that may arise. Although limitations may be 

unavoidable in certain approaches, we must better understand what are acceptable 

limitations and what are appropriate compensatory mitigations when necessary. In 

reality, access to high level nuclear medicine patient care varies across geographic 

areas with rural and some central urban areas underserved medically. The availability of 

AI tools may help these populations to a greater extent than the benefits accrued to 

populations more richly served with specialists. Thus, delaying deployment of AI tools 

until they are “perfected” may limit benefits generated by such algorithms. 

The intricacies of ethical AI in medicine leaves many questions that remain to be 

solved. We should recognize the necessity of more comprehensive ethical discourse, 

such as collectively deliberated contracts to respect equal basic rights, ensure fair 

sharing of benefits and burdens, and emphasize the importance of fair deliberative 

processes. 

 

     Regulatory and Legal Aspects. There is limited awareness by the public and 

stakeholders about the level of evidence required to validate safety, security (39) and 

each specific clinical claim by AI software solutions, as well as the evidential 

requirements to verify the added-value for appropriate reimbursement. 

There is limited legal precedent for the use or misuse of AI in healthcare and it is 

even unclear whether product liability law would apply to AI software in medicine, 

particularly if the software changes over time after regulatory approval (29). At present, 

we believe that all AI in nuclear medicine must be supervised by a physician and that 

patient care choices can be informed by AI, but ultimately are made by the physician 

based on all data and the doctor/patient relationship. Thus, we are not currently 

proposing that “autonomous AI” would eliminate the physician from patient care, but 

rather that the AI would augment physician decision making. 
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Implementation of Clinical AI Solutions & Post-Deployment Monitoring 

     AI-Platform. Current platforms for the integration of AI software applications into the 

clinical workflow are cumbersome. AI software must be able to work within the clinical 

context. Appropriate platforms are needed that allow nuclear medicine physicians to 

select and utilize various AI tools independent of a particular vendor—e.g. to have the 

AI modules as “plug-ins” or apps complementing PACS or NM specific display systems 

(30). 

 

     Barriers of Dissemination and Implementation of AI Technology in Medicine. 

Normalization of health interventions is the collective action to incorporate new changes 

into everyday practice so they become institutionalized and disappear from view (thus 

normalized) (77). According to Normalization Process Theory, the process of 

implementation involves various interconnected steps at the individual, institutional and 

societal levels. Adoption of any new evidence in the healthcare system takes 

considerable time, on average 17 years (78). With regards to the specific adoption of AI 

technology, the process of dissemination and implementation might be even more 

complicated (31). 

At the individual level, one of the major challenges is how healthcare providers 

perceive the utility of AI software. Is it helpful or another ‘hype’? Does AI save time or 

decrease throughput and overall efficiency? This perception could be held regardless of 

evidence-based performance metrics. In addition, healthcare providers must possess 

the skills to use it or be willing and able to attain these skills. The system needs 

workability within the context of the clinical workflow (79). There must be an incentive to 

change practice patterns to incorporate the new solution. The AI system as a new agent 

in the ecosystem could be perceived as a rival or a partner. 

At the institutional level, the adoption of AI can pose new challenges which must 

be weighed against other institutional needs. Institutional culture can be in favor or 

against the change. The commitment to incorporate new change (cognitive 

participation) is very important and challenging. This is essential for sustainable group 

coherence to collectively engage in the act of implementing (collective action), and 

continuous evaluation and revision (reflexive monitoring). 

At the societal level, there are multiple factors including norms, social roles, 

regulations and oversights, reimbursement policies, legal frameworks, and public 

material and informational resources that impact dissemination and implementation. 

 

     Post-Deployment: Change Management & Performance Monitoring. AI software may 

change over time as new data are integrated into a model. The total product life cycle 

approach must therefore be considered. Change control methodology must be 

established in a way that supports improvement and protects patient safety. There is a 
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need for methods to be able to conduct post-market surveillance for AI software in 

medicine by regulatory bodies, much as there is for current medical software.  

STRATEGIES FOR SUCCESS 

SNMMI Initiatives 

TO ADDRESS the need for guidance toward best AI system practice, SNMMI 

created the AI Task Force, aiming to monitor and explore emerging issues in the field of 

AI, to identify opportunities and challenges, and to recommend appropriate actions, 

policies, and programs to the society’s governing bodies and members. The task force 

comprises 4 teams, focusing on (i) strategic planning, partnership, and outreach (SPO), 

(ii) algorithm development, (iii) evaluation, and (iv) ethical considerations. This paper is 

the report of those deliberations. 

TO ADDRESS the need for inter-disciplinary creative collaboration for AI 

development, SNMMI AI Task Force designated the “SPO working group” to plan, 

organize and host the SNMMI AI Summit to bring together subject matter experts from 

academia, industry, non-governmental organizations, and government agencies, as well 

as physicians, physicists, scientists, technologists, and other stakeholders toward the 

continuous improvement of the AI and Informatics Ecosystem for nuclear medicine. 

 TO ADDRESS the need for best practices for algorithm development, SNMMI AI 

Task Force designated the “Development working group” to prepare recommendations 

and guidelines. Challenges and pitfalls to AI algorithm development were identified, and 

appropriate methods for study design, data collection and curation, algorithm 

development and testing, and reporting/dissemination were proposed. Additional 

recommendations specific to various subspecialties within nuclear medicine were also 

provided (3). 

 TO ADDRESS the need for appropriate evaluation of AI systems, SNMMI AI 

Task Force designated the “Evaluation working group” to prepare recommendations 

and guidelines. The key factors to consider in an evaluation study were envisioned, 

including the need to assess generalizability and performance on clinical tasks. The 

working group put forth the view that an evaluation study should result in a claim (4). A 

comprehensive four-class evaluation framework was established consisting of proof-of-

concept, technical efficacy, clinical evaluation, and post-market deployment studies. For 

each class of evaluation, recommendations for data collection, curation, sample-size 

determination, quantitative metrics to ascertain success, and example claims were 

provided.  

 TO ADDRESS the ethical aspects of AI development and implementation, 

SNMMI AI Task Force designated the “Ethics working group” to contemplate on the 

topic through the engagement of all of the stakeholders (communicative action). 

https://paperpile.com/c/yvEkng/Jj32L
https://paperpile.com/c/yvEkng/Jj32L
https://paperpile.com/c/yvEkng/Jj32L
https://paperpile.com/c/yvEkng/c0pH
https://paperpile.com/c/yvEkng/c0pH
https://paperpile.com/c/yvEkng/c0pH


THE JOURNAL OF NUCLEAR MEDICINE • Vol. 64 • No. 2 • February 2023  Saboury et al. 

 

 TO ADDRESS the emerging needs in the realm of precision radiopharmaceutical 

therapy, SNMMI AI Task Force designated the “AI & Dosimetry working group” to 

investigate the role of AI in multi-scale dosimetry, predictive dosimetry (treatment 

planning) and post-treatment dosimetry (treatment verification). 

 TO ADDRESS the educational needs of the nuclear medicine community, 

SNMMI AI Task Force designated the “Data Science & AI Curriculum working group” to 

prepare relevant educational material for four distinct audiences including practicing 

attending physicians, practicing nuclear medicine physicists, practicing nuclear 

medicine technologists, and in-training nuclear medicine professionals. 

SNMMI Action Plan 

Is AI a fundamental element of all aspects of nuclear medicine or an entity of its 

own? 

 It can be argued that the current structure of the SNMMI should absorb AI into all 

of its activities. For example, AI will be an increasing component of the Physics Data 

and Instrumentation space. Similarly the performance of AI could easily be a part of the 

quality and evidence committee while regulatory aspects of AI can be part of the 

governmental affairs committee. However, an alternative approach is to treat AI as a 

“separate” entity for a period of time. This could be done in the following ways: 

TO ADDRESS the perpetual needs for trustworthy AI, SNMMI AI Task Force has 

recommended the establishment of the AI Center of Excellence (AICE). Each of the 

working groups formed under the AI task force could become lasting committees of 

AICE including SPO Committee, Development Committee, Evaluation Committee, 

Ethics Committee, and Data Science & AI Curriculum Committee. In addition, AICE is 

recommended to consider construction of three new entities, as detailed below. 

 TO ADDRESS the nuances of AI Development, SNMMI AI Task Force 

recommends AICE Development Committee to consider task specific guidelines such 

as best practices for development of AI-based image reconstruction or AI-based image 

segmentation. 

 TO ADDRESS the intricacies of AI Performance Evaluation, SNMMI AI Task 

Force recommends that the AICE Evaluation Committee further detail the Task-Based 

Assessment Framework (4). An outline for conducting such evaluation was recently 

proposed, including strategies to conduct such an evaluation (37).  

TO ADDRESS the need for an impartial performance evaluation of AI systems 

available for clinical use pertaining to the practice of nuclear medicine, SNMMI AI Task 

Force recommends AICE to establish an AI Clinical Trials Network (AI-CTN). AI-CTN 

will seek to collaborate with other professional society counterparts and work toward 

interfacing with industry to design and implement a sustainable-development-

ecosystem. 
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TO ADDRESS the need for nuclear medicine data for the development and 

evaluation of AI tools, SNMMI AI Task Force recommends AICE to consider identifying 

resources to allow formation and sustainability of the Nuclear Medicine Imaging Archive 

(NMIA). NMIA will serve as a resource for the AICE SPO Committee to host competitive 

AI challenges to address clinical needs through novel solutions. NMIA will serve to 

assist in converting nuclear medicine data lakes into organized data warehouses. These 

AI-ready resources will aid in research and development of AI solutions in nuclear 

medicine. In addition, NMIA will allow curation of datasets for evaluation of 

performance. 

TO ADDRESS the need for multi-disciplinary and inclusive discourse to actualize 

the ethical and trustworthy implementation of AI in medicine and society, SNMMI AI 

Task Force recommends AICE to spearhead formation of the Trustworthy AI in 

Medicine and Society Coalition (TAIMS coalition to ‘tame’ AI) with the help of the AICE 

SPO Committee. This coalition shall include medical imaging societies and non-imaging 

medical groups as well as non-medical societal institutions (toward The AI Bill of Rights 

(43)). 

The above needs are important, yet one has to be cognizant of the needs versus 

the number of volunteers and resources available to best address the important tasks. 

Establishing a new SNMMI task force on AI implementation may be an appropriate 

intermediate structure. 

SNMMI Recommendations  

     Integration of AI Algorithms into Clinical Workflow (AI Orchestrator for 

Interoperability). To facilitate dissemination and implementation of AI-based algorithms 

in the clinical setting, workflow integration is needed. Integration of these applications 

into the clinical image viewer (PACS) must be seamless and ‘vendor neutral’ in order to 

be widely adopted. An ‘AI Orchestrator’ could interface with functionality currently 

available in a PACS both locally and through cloud applications. The AI Orchestrator 

would enable physicians and medical providers to select the best-of-breed AI 

applications without being tied to a particular PACS vendor platform. To actualize this 

goal, there should be a collaborative effort among AI developers, enterprise imaging 

archive vendors, interoperability standardization organizations, and professional 

medical societies.  

 This recommendation is essential for realization of clinical image interpretation 

and quantification of tomorrow in which physicians will be able to choose the best and 

most cost-effective AI technologies for specific clinical indications and will be freer to 

custom tailor their own workflow as new, better, or more cost-effective solutions become 

available. With modular components that scale with needs, smaller institutions and 

individual physicians will more easily incorporate technologies currently only available at 

much larger healthcare systems.  
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     Harmonized List-Mode Data Format. As demonstrated in other research fields driven 

by open science, a common data standard, ethical principles and public datasets are 

the keys to initiate a successful new wave of productive research and growth. In nuclear 

medicine and molecular imaging, the major vendors have different list mode formats, 

particularly for time-of-flight information. This is one of the biggest roadblocks for the 

development of both traditional image formation and analysis algorithms, and becomes 

a more salient problem in the era of artificial intelligence and open science. To address 

this point, a vendor neutral list mode format is urgently needed to move the field 

forward. It is technically not difficult, but needs communication and endorsement among 

all the shareholders.  

     Regulatory Process. Regulation of AI software is in the early stages and will continue 

to evolve. SNMMI recommends professional societies actively engage with each other 

to share clinical experience of experts practicing in the affected clinical areas, which 

could be informative to regulatory agencies.  

     Certification and Accreditation Pathways. Subspecialized tracks should be 

conceptualized to demonstrate added competency in the clinical aspects of nuclear 

medicine informatics (26). For board certified nuclear medicine physicians, an ACGME 

accredited Clinical Informatics fellowship with focus on the nuances of advanced 

molecular imaging and therapy should be established for subspecialty board 

certification by American Board of Preventive Medicine (ABPM) in Clinical Informatics. 
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