
List of features. Radiomix toolbox



Definition of RadiomiX features 

First-order gray-level statistics 

First-order gray-level statistics describe the distribution of gray-values within the volume. Let 𝑋 

denote the three dimensional image matrix with 𝑁 voxels, 𝑃 the first order histogram, 𝑃(𝑖) the 

fraction of voxels with intensity level 𝑖 and 𝑁𝑙  the number of discrete intensity levels. 

1. Energy

𝑒𝑛𝑒𝑟𝑔𝑦 =∑𝑋(𝑖)2
𝑁

𝑖=1

 

Energy is also known as the sum of squares. 

2. Entropy

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =∑𝑃(𝑖) log2 𝑃(𝑖)

𝑁𝑙

𝑖=1

 

3. Kurtosis

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

1
𝑁
∑ (𝑋(𝑖) − �̅�)4𝑁
𝑖=1

(
1
𝑁
∑ (𝑋(𝑖) − �̅�)2𝑁
𝑖=1 )

2

where �̅� is the mean of 𝑋. 

4. Maximum

The maximum intensity value of 𝑋. 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = max(𝑋) 

5. Mean

The mean gray-value of 𝑋. 

𝑚𝑒𝑎𝑛 =
1

𝑁
∑𝑋(𝑖)

𝑁

𝑖=1

 



6. Mean absolute deviation

The mean of the absolute deviations of all voxel intensities around the mean intensity value. 

𝑚𝑒𝑎𝑛𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
1

𝑁
∑|𝑋(𝑖) − 𝑋|

𝑁

𝑖=1

 

where �̅� is the mean of 𝑋. 

7. Median

The sample median of 𝑋, or the 50th percentile of 𝑋. 

8. Minimum

The minimum intensity value of 𝑋. 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = min(𝑋) 

9. Range

The range of intensity values of 𝑋. 

𝑟𝑎𝑛𝑔𝑒 = max(𝑋) − min(𝑋) 

10. Root mean square (RMS)

The quadratic mean, or the square root of the mean of squares of all voxel intensities. 

𝑅𝑀𝑆 = √
∑ 𝑋(𝑖)2𝑁
𝑖

𝑁

11. Skewness

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =

1
𝑁
∑ (𝑋(𝑖) − �̅�)3𝑁
𝑖=1

(√
1
𝑁
∑ (𝑋(𝑖) − �̅�)2𝑁
𝑖=1 )

3

where �̅� is the mean of 𝑋. 

12. Standard deviation

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = (
1

𝑁 − 1
∑(𝑋(𝑖) − �̅�)2
𝑁

𝑖=1

)

1 2⁄

where �̅� is the mean of 𝑋. 



13. Robust mean absolute deviation

The mean absolute deviation (0) of only those voxels in 𝑋 with a gray-value between the 10th and 90th 

percentile. 

14. 10th percentile

The 10th percentile of 𝑋, a robust alternative to the minimum gray-value (8). 

15. 90th percentile

The 90th percentile of 𝑋, a robust alternative to the maximum gray-value (4). 

16. Interquartile range

The interquartile range is defined as the 75th minus the 25th percentile of 𝑋. 

17. Uniformity

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 =∑𝑃(𝑖)2

𝑁𝑙

𝑖=1

 

18. Variance

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =
1

𝑁 − 1
∑(𝑋(𝑖) − �̅�)2
𝑁

𝑖=1

 

where �̅� is the mean of 𝑋. Variance is the square of the standard deviation (12). 



Fractal Dimension features (FD)

Given the FD processed image 𝐼, with 𝑁 elements: 

19. Average:

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑁
∑𝐼 

20. Lacunarity

𝑙𝑎𝑐𝑢𝑛𝑎𝑟𝑖𝑡𝑦 =

1
𝑁
∑ 𝐼2

1
𝑁2∑𝐼

− 1

21. Standard deviation:

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = (
1

𝑁 − 1
∑(𝐼 − 𝐼)2)

1 2⁄

Where 𝐼 is the mean of 𝐼. 



Geometric features 

Geometric features describe the shape and size of the volume of interest. Let 𝑉be the volume and 𝐴 

the surface area of the volume of interest. Let 𝑁 be the total number of voxels, 𝑋 = {�⃗�1, �⃗�2, … , �⃗�𝑁} 

the set of N Cartesian coordinate vectors and 𝐼 = {𝐼1, 𝐼2, … , 𝐼𝑁} the corresponding intensity values. 

22. Asphericity

𝑎𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 = (
1

36𝜋

𝐴3

𝑉2)

1
3

− 1

23. Centroid distance

The centroid distance is the Euclidean distance between the geometric centroid (𝐶𝑔) and the centroid 

weighing each voxel by its intensity value (𝐶𝑖). The centroid distance is a measure of how close the 

high intensity values are to the geometric center. 

𝐶𝑔 =
1

𝑁
∑�⃗�𝑖

𝑁

𝑖=1

 

𝐶𝑖 =
∑ 𝐼�⃗�𝑖
𝑁
𝑖=1

∑ 𝐼𝑁
𝑖=1

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ‖𝐶𝑔 − 𝐶𝑖‖ 

24. Compactness 1

Compactness is a measure of how much the volume resembles a sphere.

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠1 =
𝑉

√𝜋𝐴
2
3

25. Compactness 2

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠2 = 36𝜋
𝑉2

𝐴3

26. Compactness 3

𝑐𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠3 =
𝑉

√𝜋𝐴
3
2



27. Maximum diameter

The maximum diameter is the largest pairwise difference between voxels on the surface of the 

volume, in 3D and for each plane separately. The following diameters are calculated: 

27.1. The maximum three-dimensional tumor diameter. 

27.2. The maximum two-dimensional diameter of all transversal planes. 

27.3. The maximum two-dimensional diameter of all sagittal planes. 

27.4. The maximum two-dimensional diameter of all coronal planes. 

28. Major axis length

Axis lengths are measures of the extent of the volume along its three principle axis. Principle 

component analysis (PCA) on the x, y and z coordinates of all voxels within the volume is used to 

determine the three orthogonal eigenvectors and corresponding eigenvalues (𝜆𝑚𝑎𝑥, 𝜆𝑚𝑖𝑛𝑜𝑟, 𝜆𝑚𝑖𝑛). 

The major axis length is the largest eigenvalue (𝜆𝑚𝑎𝑥) as determined by PCA. 

29. Minor axis length

The largest eigenvalue (𝜆𝑚𝑖𝑛𝑜𝑟) as determined by PCA. 

30. Least axis length

The smallest eigenvalue (𝜆𝑚𝑖𝑛) as determined by PCA. 

31. Elongation

𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 =
𝜆𝑚𝑖𝑛𝑜𝑟

𝜆𝑚𝑎𝑥

32. Flatness

𝑓𝑙𝑎𝑡𝑛𝑒𝑠𝑠 =
𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥



33. Spherical disproportion 

Spherical disproportion is a measure of how much the volume resembles a sphere. 

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙𝑑𝑖𝑠𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 =
𝐴

4𝜋𝑅2

Where 𝐴 is the surface area and 𝑅is the radius of a sphere with the same volume as the tumor, 

obtained through: 

𝑅 = √
3𝑉

4𝜋

3

34. Sphericity 

Sphericity is a measure of how much the volume resembles a sphere. 

𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑖𝑡𝑦 =
𝜋
1
3(6𝑉)

2
3

𝐴
=
(36𝜋𝑉2)

1
3

𝐴

35. Surface area

The surface area is calculated by triangulation (i.e. dividing the surface into connected triangles, 

which define the isosurface enclosing the volume) and is defined as: 

𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑎𝑟𝑒𝑎 =∑
1

2
|𝑎𝑖𝑏𝑖 × 𝑎𝑖𝑐𝑖|

𝑁

𝑖=1

 

Where 𝑁 is the total number of triangles covering the surface and 𝑎, 𝑏 and 𝑐 are edge vectors of the 

triangles. 

36. Surface to volume ratio

𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑡𝑜𝑣𝑜𝑙𝑢𝑚𝑒𝑟𝑎𝑡𝑖𝑜 =
𝐴

𝑉

37. Volume

The volume is defined as the number of voxels within the volume multiplied by the voxel volume. 

𝑣𝑜𝑙𝑢𝑚𝑒 = 𝑁𝑣 

Where 𝑣 is the volume of a single voxel. 



Gray-Level Co-Occurrence Matrix based features (GCLM)

A normalized GLCM is defined as 𝑃(𝑖, 𝑗; 𝛿, 𝛼), a matrix with size 𝑁𝑔 × 𝑁𝑔 describing the second-order 

joint probability function of an image, where the (𝑖, 𝑗)th element represents the number of times 

the combination of intensity levels 𝑖 and 𝑗 occur in two pixels in the image, that are separated by a 

distance of 𝛿 pixels in direction 𝛼, and 𝑁𝑔 is the maximum discrete intensity level in the image. Let: 

𝑃(𝑖, 𝑗) be the normalized (i.e. ∑ 𝑃(𝑖, 𝑗) = 1) co-occurrence matrix, generalized for any 𝛿 and 𝛼 , 

𝑝𝑥(𝑖) = ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔

𝑗=1
, 

𝑝𝑦(𝑗) = ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔

𝑖=1
, 

𝜇𝑥 be the mean of 𝑝𝑥, where 𝜇𝑥 = ∑ ∑ 𝑖𝑃(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
 

𝜇𝑦 be the mean of 𝑝𝑦, where 𝜇𝑦 = ∑ ∑ 𝑗𝑃(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
 

𝜎𝑥 be the standard deviation of 𝑝𝑥, where 𝜎𝑥
2 = ∑ ∑ 𝑃(𝑖, 𝑗)(𝑖 − 𝜇𝑥)

2𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝜎𝑦 be the standard deviation of 𝑝𝑦, where 𝜎𝑦
2 = ∑ ∑ 𝑃(𝑖, 𝑗)(𝑗 − 𝜇𝑦)

2𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝑝𝑥+𝑦(𝑘) = ∑ ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
, 𝑖 + 𝑗 = 𝑘, 𝑘 = 2,3,… ,2𝑁𝑔, 

𝑝𝑥−𝑦(𝑘) = ∑ ∑ 𝑃(𝑖, 𝑗)
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
, |𝑖 − 𝑗| = 𝑘, 𝑘 = 0,1, … , 𝑁𝑔 − 1, 

𝐻𝑋𝑌1 = −∑ ∑ 𝑃(𝑖, 𝑗) ln(𝑝𝑥(𝑖)𝑝𝑦(𝑗)) 
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
, 

𝐻𝑋𝑌2 = −∑ ∑ 𝑝𝑥(𝑖)𝑝𝑦(𝑗) ln(𝑝𝑥(𝑖)𝑝𝑦(𝑗))
𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
, 

𝐻𝑋 = −∑𝑝𝑥 ln(𝑝𝑥) 

𝐻𝑌 = −∑𝑝𝑦 ln(𝑝𝑦) 

38. Average (𝝁)

𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝜇) =
∑ ∑ (𝑖 + 𝑗)𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

2

Note that for a symmetrical GLCM, 𝜇 = 𝜇𝑥 = 𝜇𝑦. 



39. Autocorrelation

𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =∑∑𝑖𝑗𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

40. Cluster Prominence

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 =∑∑[𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦]
4
𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

41. Cluster Shade

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠ℎ𝑎𝑑𝑒 =∑∑[𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦]
3
𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

42. Cluster Tendency

𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑡𝑒𝑛𝑑𝑒𝑛𝑐𝑦 =∑∑[𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦]
2
𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

43. Contrast

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =∑∑|𝑖 − 𝑗|2𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

= ∑ 𝑘2

𝑁𝑔−1

𝑘=0

𝑝𝑥−𝑦(𝑘) 

44. Correlation

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =
∑ ∑ 𝑖𝑗𝑃(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝜎𝑥𝜎𝑦

45. Difference Average (𝝁𝒙−𝒚)

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝜇𝑥−𝑦) = ∑ 𝑘𝑝𝑥−𝑦

𝑁𝑔−1

𝑘=0

 

46. Difference Entropy

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑃𝑥−𝑦(𝑖) log2[𝑃𝑥−𝑦(𝑖)]

𝑁𝑔−1

𝑖=0

 



47. Difference Variance

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑ (𝑖 − 𝜇𝑥−𝑦)
2𝑃𝑥−𝑦(𝑖)

𝑁𝑔−1

𝑖=0

48. Dissimilarity

𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =∑∑|𝑖 − 𝑗|𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

49. Energy

𝑒𝑛𝑒𝑟𝑔𝑦 =∑∑[𝑃(𝑖, 𝑗)]2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

This feature is also called Angular Second Moment (ASM) and Uniformity. 

50. Entropy (H)

𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝐻) = −∑∑𝑃(𝑖, 𝑗) log2[𝑃(𝑖, 𝑗)]

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

51. Homogeneity 1

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦1 =∑∑
𝑃(𝑖, 𝑗)

1 + |𝑖 − 𝑗|

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

This feature is also called Inverse Difference. 

52. Homogeneity 2

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦2 =∑∑
𝑃(𝑖, 𝑗)

1 + |𝑖 − 𝑗|2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

This feature is also called Inverse Difference Moment. 

53. Informational measure of correlation 1 (IMC1)

𝐼𝑀𝐶1 =
𝐻 − 𝐻𝑋𝑌1

max{𝐻𝑋,𝐻𝑌}

Where 𝐻 is the entropy (50). 



54. Informational measure of correlation 2 (IMC2)

𝐼𝑀𝐶2 = √1 − 𝑒−2(𝐻𝑋𝑌2−𝐻) 

Where 𝐻 is the entropy (50). 

55. Inverse Difference Moment Normalized (IDMN)

𝐼𝐷𝑀𝑁 =∑∑
𝑃(𝑖, 𝑗)

1 + (
|𝑖 − 𝑗|2

𝑁𝑔
2 )

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

56. Inverse Difference Normalized (IDN)

𝐼𝐷𝑁 =∑∑
𝑃(𝑖, 𝑗)

1 + (
|𝑖 − 𝑗|
𝑁𝑔

)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

57. Inverse variance

𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =∑∑
𝑃(𝑖, 𝑗)

|𝑖 − 𝑗|2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

, 𝑖 ≠ 𝑗 

58. Maximal Correlation Coefficient

𝑚𝑎𝑥𝑖𝑚𝑎𝑙𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = √secondlargesteigenvalueof𝑄 

𝑄 = ∑
𝑃(𝑖, 𝑘)𝑃(𝑗, 𝑘)

𝑝𝑥(𝑖)𝑝𝑦(𝑘)

𝑁𝑔

𝑘=1

59. Maximum Probability

𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = max{𝑃(𝑖, 𝑗)} 

60. Sum average (SA)

𝑠𝑢𝑚𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑆𝐴) = ∑[𝑖𝑃𝑥+𝑦(𝑖)]

2𝑁𝑔

𝑖=2

 

61. Sum entropy

𝑠𝑢𝑚𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝑃𝑥+𝑦(𝑖) log2[𝑃𝑥+𝑦(𝑖)]

2𝑁𝑔

𝑖=2

 



62. Sum variance

𝑠𝑢𝑚𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑(𝑖 − 𝑆𝐴)2𝑃𝑥+𝑦(𝑖)

2𝑁𝑔

𝑖=2

63. Variance (sum of squares)

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =∑∑(𝑖 − 𝜇)2𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 



Gray-Level Run-Length matrix based features (GLRLM)

Run length metrics quantify gray level runs in an image. A gray level run is defined as the length in 

number of pixels, of consecutive pixels that have the same gray level value. In a gray level run length 

matrix 𝑝(𝑖, 𝑗|𝜃), the (𝑖, 𝑗)th element describes the number of times 𝑗 a gray level 𝑖 appears 

consecutively in the direction specified by 𝜃. Let: 

𝑝(𝑖, 𝑗) be the (𝑖, 𝑗)th entry in the given run-length matrix 𝑝, generalized for any direction 𝜃, 

𝑁𝑔 the number of discrete intensity values in the image, 

𝑁𝑟 the maximum run length, 

𝑁𝑠 the total number of runs, where 𝑁𝑠 = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1
, 

𝑝𝑟  the sum distribution of the number of runs with run length 𝑗, where 𝑝𝑟(𝑗) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔

𝑖=1
, 

𝑝𝑔 the sum distribution of the number of runs with gray level 𝑖, where 𝑝𝑔(𝑖) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑟
𝑗=1 , 

𝑁𝑝 the number of voxels in the image, where 𝑁𝑝 = ∑ 𝑗𝑝𝑟
𝑁𝑟
𝑗=1 ,

𝑝𝑛(𝑖, 𝑗) the normalized run-length matrix, where  𝑝𝑛(𝑖, 𝑗) =
𝑝(𝑖,𝑗)

𝑁𝑠
, 

𝜇𝑟 the mean run length, where 𝜇𝑟 = ∑ ∑ 𝑗𝑝𝑛(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1
, 

𝜇𝑔 the mean gray level, where 𝜇𝑔 = ∑ ∑ 𝑖𝑝𝑛(𝑖, 𝑗)
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1
. 

64. Short Run Emphasis (SRE)

𝑆𝑅𝐸 =
1

𝑁𝑠
∑

𝑝𝑟
𝑗2

𝑁𝑟

𝑗=1

65. Long Run Emphasis (LRE)

𝐿𝑅𝐸 =
1

𝑁𝑠
∑𝑗2𝑝𝑟

𝑁𝑟

𝑗=1

66. Gray Level Non-Uniformity (GLN)

𝐺𝐿𝑁 =
1

𝑁𝑠
∑𝑝𝑔

2

𝑁𝑔

𝑖=1



67. Gray Level Non-Uniformity Normalized (GLNN)

𝐺𝐿𝑁𝑁 =
1

𝑁𝑠
2∑𝑝𝑔

2

𝑁𝑔

𝑖=1

68. Run Length Non-Uniformity (RLN)

𝑅𝐿𝑁 =
1

𝑁𝑠
∑𝑝𝑟

2

𝑁𝑟

𝑗=1

69. Run Length Non-Uniformity Normalized (RLNN)

𝑅𝐿𝑁𝑁 =
1

𝑁𝑠
2∑𝑝𝑟

2

𝑁𝑟

𝑗=1

70. Run Percentage (RP)

𝑅𝑃 =
𝑁𝑠
𝑁𝑝

71. Low Gray Level Run Emphasis (LGRE)

𝐿𝐺𝑅𝐸 =
1

𝑁𝑠
∑

𝑝𝑔

𝑖2

𝑁𝑔

𝑖=1

72. High Gray Level Run Emphasis (HGRE)

𝐻𝐺𝑅𝐸 =
1

𝑁𝑠
∑𝑖2𝑝𝑔

𝑁𝑔

𝑖=1

73. Short Run Low Gray Level Emphasis (SRLGE)

𝑆𝑅𝐿𝐺𝐸 =
1

𝑁𝑠
∑∑

𝑝(𝑖, 𝑗)

𝑖2𝑗2

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

74. Short Run High Gray Level Emphasis (SRHGE)

𝑆𝑅𝐻𝐺𝐸 =
1

𝑁𝑠
∑∑

𝑝(𝑖, 𝑗)𝑖2

𝑗2

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

75. Long Run Low Gray Level Emphasis (LRLGE)

𝐿𝑅𝐿𝐺𝐸 =
1

𝑁𝑠
∑∑

𝑝(𝑖, 𝑗)𝑗2

𝑖2

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1



76. Long Run High Gray Level Emphasis (LRHGE)

𝐿𝑅𝐻𝐺𝐸 =
1

𝑁𝑠
∑∑𝑝(𝑖, 𝑗)𝑖2𝑗2

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

77. Gray level variance (GLV)

𝐺𝐿𝑉 =∑∑(𝑖 − 𝜇𝑔)
2𝑝𝑛(𝑖, 𝑗)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

78. Run length variance (RLV)

𝑅𝐿𝑉 =∑∑(𝑗 − 𝜇𝑟)
2𝑝𝑛(𝑖, 𝑗)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

79. Run entropy (RE)

𝑅𝐸 = −∑∑𝑝𝑛(𝑖, 𝑗|𝜃)log2[ 𝑝𝑛(𝑖, 𝑗)]

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 



Gray-Level size-zone matrix based features (GLSZM)

A gray level size-zone matrix describes the amount of homogeneous connected areas within the 

volume, of a certain size and intensity. The (𝑖, 𝑗)th entry of the GLSZM 𝑝(𝑖, 𝑗) is the number of 

connected areas of gray-level (i.e. intensity value) 𝑖 and size 𝑗. GLSZM features therefore describe 

homogeneous areas within the tumor volume, describing tumor heterogeneity at a regional scale. 

Let: 

𝑝(𝑖, 𝑗) be the (𝑖, 𝑗)th entry in the given GLSZM 𝑝, 

𝑁𝑔 the number of discrete intensity values in the image, 

𝑁𝑧 the size of the largest, homogeneous region in the volume of interest, 

𝑁𝑠 the total number of homogeneous regions (zones), where 𝑁𝑠 = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1
, 

𝑝𝑧 the sum distribution of the number of zones with size 𝑗, where 𝑝𝑧(𝑗) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔

𝑖=1
, 

𝑝𝑔 the sum distribution of the number of zones with gray level 𝑖, where 𝑝𝑔(𝑖) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑧
𝑗=1 , 

𝑁𝑝 the number of voxels in the image, where 𝑁𝑝 = ∑ 𝑗𝑝𝑧
𝑁𝑧
𝑗=1 ,

𝑝𝑛(𝑖, 𝑗) the normalized size-zone matrix, where  𝑝𝑛(𝑖, 𝑗) =
𝑝(𝑖,𝑗)

𝑁𝑠
, 

𝜇𝑧 the mean zone size, where 𝜇𝑧 = ∑ ∑ 𝑗𝑝𝑛(𝑖, 𝑗|𝜃)
𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1
, 

𝜇𝑔 the mean gray level, where 𝜇𝑔 = ∑ ∑ 𝑖𝑝𝑛(𝑖, 𝑗|𝜃)
𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1
. 

80. Small area Emphasis (SAE)

𝑆𝐴𝐸 =
1

𝑁𝑠
∑

𝑝𝑧
𝑗2

𝑁𝑧

𝑗=1

81. Large area Emphasis (LAE)

𝐿𝐴𝐸 =
1

𝑁𝑠
∑𝑗2𝑝𝑧

𝑁𝑧

𝑗=1

82. Intensity Non-Uniformity (IN)

𝐼𝑁 =
1

𝑁𝑠
∑𝑝𝑔

2

𝑁𝑔

𝑖=1



83. Intensity Non-Uniformity Normalized (INN)

𝐼𝑁𝑁 =
1

𝑁𝑠
2∑𝑝𝑔

2

𝑁𝑔

𝑖=1

84. Size-zone Non-Uniformity (SZN)

𝑆𝑍𝑁 =
1

𝑁𝑠
∑𝑝𝑧

2

𝑁𝑧

𝑗=1

85. Size-zone Non-Uniformity Normalized (SZNN)

𝑆𝑍𝑁𝑁 =
1

𝑁𝑠
2∑𝑝𝑧

2

𝑁𝑧

𝑗=1

86. Zone Percentage (ZP)

𝑍𝑃 =
𝑁𝑠
𝑁𝑝

87. Low intensity Emphasis (LIE)

𝐿𝐼𝐸 =
1

𝑁𝑠
∑

𝑝𝑔

𝑖2

𝑁𝑔

𝑖=1

88. High intensity Emphasis (HIE)

𝐻𝐼𝐸 =
1

𝑁𝑠
∑𝑖2𝑝𝑔

𝑁𝑔

𝑖=1

89. Low intensity small area Emphasis (LISAE)

𝐿𝐼𝑆𝐴𝐸 =
1

𝑁𝑠
∑∑

𝑝(𝑖, 𝑗)

𝑖2𝑗2

𝑁𝑧

𝑗=1

𝑁𝑔

𝑖=1

90. High intensity small area Emphasis (HISAE)

𝐻𝐼𝑆𝐴𝐸 =
1

𝑁𝑠
∑∑

𝑝(𝑖, 𝑗)𝑖2

𝑗2

𝑁𝑧

𝑗=1

𝑁𝑔

𝑖=1

91. Low intensity large area Emphasis (LILAE)

𝐿𝐼𝐿𝐴𝐸 =
1

𝑁𝑠
∑∑

𝑝(𝑖, 𝑗)𝑗2

𝑖2

𝑁𝑧

𝑗=1

𝑁𝑔

𝑖=1



92. High intensity large area Emphasis (HILAE)

𝐻𝐼𝐿𝐴𝐸 =
1

𝑁𝑠
∑∑𝑝(𝑖, 𝑗)𝑖2𝑗2

𝑁𝑧

𝑗=1

𝑁𝑔

𝑖=1

 

93. Intensity variance (IV)

𝐼𝑉 =∑∑(𝑖 − 𝜇𝑔)
2𝑝𝑛(𝑖, 𝑗)

𝑁𝑧

𝑗=1

𝑁𝑔

𝑖=1

94. Size-zone variance (SZV)

𝑆𝑍𝑉 =∑∑(𝑗 − 𝜇𝑧)
2𝑝𝑛(𝑖, 𝑗)

𝑁𝑧

𝑗=1

𝑁𝑔

𝑖=1

95. Zone entropy (ZE)

𝑍𝐸 = −∑∑𝑝𝑛(𝑖, 𝑗)log2[ 𝑝𝑛(𝑖, 𝑗)]

𝑁𝑧

𝑗=1

𝑁𝑔

𝑖=1

 



Gray-Level distance-zone matrix based features (GLDZM)

A gray level distance-zone matrix describes the amount of homogeneous connected areas within the 

volume, of a certain intensity and distance to the shape border. The shape border is defined by 6-

connectedness in 3D (i.e. a voxel is on the border, if at least one face is exposed). Here, the minimum 

distance to the border is 1 (i.e. voxels on the border have a distance of 1), to allow for correct 

feature calculations. The (𝑖, 𝑗)th entry of the GLDZM 𝑝(𝑖, 𝑗) is the number of connected areas of 

gray-level (i.e. intensity value) 𝑖 and minimum distance 𝑗 to the shape border. GLSZM features 

therefore describe the radial distribution of homogeneous areas within the tumor volume. Let: 

𝑝(𝑖, 𝑗) be the (𝑖, 𝑗)th entry in the given GLDZM 𝑝, 

𝑁𝑔 the number of discrete intensity values in the image, 

𝑁𝑑 the largest distance of a homogeneous region in the volume of interest to the shape border, 

𝑁𝑠 the total number of homogeneous regions (zones), where 𝑁𝑠 = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1
, 

𝑝𝑑 the sum distribution of the number of zones with distance 𝑗, where 𝑝𝑧(𝑗) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑔

𝑖=1
, 

𝑝𝑔 the sum distribution of the number of zones with gray level 𝑖, where 𝑝𝑔(𝑖) = ∑ 𝑝(𝑖, 𝑗)
𝑁𝑧
𝑗=1 , 

𝑁𝑝 the number of voxels in the image, where 𝑁𝑝 = ∑ 𝑗𝑝𝑑
𝑁𝑑
𝑗=1 ,

𝑝𝑛(𝑖, 𝑗) the normalized size-zone matrix, where  𝑝𝑛(𝑖, 𝑗) =
𝑝(𝑖,𝑗)

𝑁𝑠
, 

𝜇𝑑 the mean distance, where 𝜇𝑑 = ∑ ∑ 𝑗𝑝𝑛(𝑖, 𝑗|𝜃)
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1
, 

𝜇𝑔 the mean gray level, where 𝜇𝑔 = ∑ ∑ 𝑖𝑝𝑛(𝑖, 𝑗|𝜃)
𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1
. 

96. Small distance Emphasis (SDE)

𝑆𝐷𝐸 =
1

𝑁𝑠
∑

𝑝𝑑
𝑗2

𝑁𝑑

𝑗=1



97. Large distance Emphasis (LDE)

𝐿𝐷𝐸 =
1

𝑁𝑠
∑𝑗2𝑝𝑑

𝑁𝑑

𝑗=1

98. Intensity Non-Uniformity (IN)

𝐼𝑁 =
1

𝑁𝑠
∑𝑝𝑔

2

𝑁𝑔

𝑖=1

99. Intensity Non-Uniformity Normalized (INN)

𝐼𝑁𝑁 =
1

𝑁𝑠
2∑𝑝𝑔

2

𝑁𝑔

𝑖=1

100. Distance-zone Non-Uniformity (DZN)

𝐷𝑍𝑁 =
1

𝑁𝑠
∑𝑝𝑑

2

𝑁𝑑

𝑗=1

101. Distance-zone Non-Uniformity Normalized (DZNN)

𝐷𝑍𝑁𝑁 =
1

𝑁𝑠
2∑𝑝𝑑

2

𝑁𝑑

𝑗=1

102. Zone Percentage (ZP)

𝑍𝑃 =
𝑁𝑠
𝑁𝑝

103. Low intensity Emphasis (LIE)

𝐿𝐼𝐸 =
1

𝑁𝑠
∑

𝑝𝑔

𝑖2

𝑁𝑔

𝑖=1

104. High intensity Emphasis (HIE)

𝐻𝐼𝐸 =
1

𝑁𝑠
∑𝑖2𝑝𝑔

𝑁𝑔

𝑖=1

105. Low intensity small distance Emphasis (LISDE)

𝐿𝐼𝑆𝐴𝐸 =
1

𝑁𝑠
∑∑

𝑝(𝑖, 𝑗)

𝑖2𝑗2

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1



106. High intensity small distance Emphasis (HISDE)

𝐻𝐼𝑆𝐴𝐸 =
1

𝑁𝑠
∑∑

𝑝(𝑖, 𝑗)𝑖2

𝑗2

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

107. Low intensity large distance Emphasis (LILDE)

𝐿𝐼𝐿𝐴𝐸 =
1

𝑁𝑠
∑∑

𝑝(𝑖, 𝑗)𝑗2

𝑖2

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

108. High intensity large distance Emphasis (HILDE)

𝐻𝐼𝐿𝐴𝐸 =
1

𝑁𝑠
∑∑𝑝(𝑖, 𝑗)𝑖2𝑗2

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

 

109. Intensity variance (IV)

𝐼𝑉 =∑∑(𝑖 − 𝜇𝑔)
2𝑝𝑛(𝑖, 𝑗)

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

110. Distance-zone variance (DZV)

𝑆𝑍𝑉 =∑∑(𝑗 − 𝜇𝑑)
2𝑝𝑛(𝑖, 𝑗)

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

111. Distance-zone entropy (DZE)

𝐷𝑍𝐸 = −∑∑𝑝𝑛(𝑖, 𝑗)log2[ 𝑝𝑛(𝑖, 𝑗)]

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

 



Intensity histogram features 

Intensity histogram features describe the distribution of grey values within the volume, after 

discretization into intensity level bins was applied. Let:  

𝑋𝑑 = {𝑋𝑑,1, 𝑋𝑑,2, … , 𝑋𝑑,𝑁𝑣
} be the set of discretized intensity values of the 𝑁𝑣 voxels in the volume of

interest,  

𝐻 = {𝑛1, 𝑛2, … } be the histogram with frequency count 𝑛𝑖 of each discretized intensity level 𝑖 in 𝑋𝑑, 

𝑁𝑔 be the number of discretized intensity values (bins) in the volume of interest,  

𝑝𝑖  be the occurrence probability for each bin 𝑖 of the histogram 𝑁𝑔, where 𝑝𝑖 = 𝑛𝑖/𝑁𝑣.  

112. Coefficient of variance (cov)

𝑐𝑜𝑣 = 
standarddeviation

mean

113. Energy

𝑒𝑛𝑒𝑟𝑔𝑦 =∑𝑋𝑑(𝑗)
2

𝑁𝑣

𝑗=1

Energy is also known as the sum of squares. 

114. Entropy

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑𝑃(𝑖) log2 𝑃(𝑖)

𝑁𝑔

𝑖=1

 

115. Interquartile range (iqr)

𝐼𝑄𝑅 = 𝑃75 − 𝑃25 

where 𝑃25 and 𝑃75 are the 25th and 75th percentile of 𝑋𝑑, respectively. 

116. Kurtosis



𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =

1
𝑁𝑣

∑ (𝑋𝑑(𝑗) − �̅�𝑑)
4𝑁𝑣

𝑗=1

(
1
𝑁𝑣

∑ (𝑋𝑑(𝑗) − �̅�𝑑)
2𝑁𝑣

𝑗=1 )
2

where �̅�𝑑 is the mean of 𝑋𝑑. 

117. Maximum

The maximum discretized intensity value of 𝑋𝑑. 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 = max(𝑋𝑑) 

118. Maximum histogram gradient (maxgrad)

𝑚𝑎𝑥𝑔𝑟𝑎𝑑 = max(𝐻′) 

Where 𝐻′ is the histogram gradient, defined as: 

𝐻′ = {𝐻(2) − 𝐻(1), … ,
𝐻(𝑖 + 1) − 𝐻(𝑖 − 1)

2
,… ,𝐻(𝑁𝑔) − 𝐻(𝑁𝑔 − 1)} 

119. Maximum histogram gradient intensity level (maxgradi)

The discretized intensity level 𝑖 corresponding to the maximum histogram gradient. 

120. Mean

The mean discretized intensity value of 𝑋𝑑. 

𝑚𝑒𝑎𝑛 =
1

𝑁𝑣
∑𝑋𝑑(𝑗)

𝑁𝑣

𝑗=1

 

121. Mean absolute deviation (meand)

The mean of the absolute deviations of all discretized intensity levels around the mean of 𝑋𝑑. 



𝑚𝑒𝑎𝑛𝑑 = 
1

𝑁𝑣
∑|𝑋𝑑(𝑗) − 𝑋𝑑̅̅̅̅ |

𝑁𝑣

𝑗=1

where �̅�𝑑 is the mean of 𝑋𝑑. 

122. Median

The sample median of 𝑋𝑑 or the 50th percentile of 𝑋𝑑. 

123. Median absolute deviation (mediand)

The dispersion from the median of 𝑋𝑑. 

𝑚𝑒𝑑𝑖𝑎𝑛𝑑 = 
1

𝑁𝑣
∑|𝑋𝑑(𝑗) − 𝑀|

𝑁𝑣

𝑗=1

 

where 𝑀 is the median of 𝑋𝑑. 

124. Minimum

The minimum discretized intensity value of 𝑋𝑑. 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = min(𝑋𝑑) 

125. Minimum histogram gradient (mingrad)

𝑚𝑖𝑛𝑔𝑟𝑎𝑑 = min(𝐻′) 

Where 𝐻′ is the histogram gradient, defined as: 

𝐻′ = {𝐻(2) − 𝐻(1), … ,
𝐻(𝑖 + 1) − 𝐻(𝑖 − 1)

2
,… ,𝐻(𝑁𝑔) − 𝐻(𝑁𝑔 − 1)} 

126. Minimum histogram gradient intensity level (mingradi)

The discretized intensity level 𝑖 corresponding to the minimum histogram gradient. 



127. Mode

The mode of 𝑋𝑑 is the most frequently occurring discretized image level present. In case multiple 

bins have the highest count 𝑛𝑖, the mode is the smallest of those values.  

128. Uniformity

𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 = ∑𝑃(𝑖)2

𝑁𝑔

𝑖=1

 

129. Range

The range of bins in the histogram, i.e. the width of the histogram. 

𝑟𝑎𝑛𝑔𝑒 = max(𝑋𝑑) − min(𝑋𝑑) 

130. Root mean square (RMS):

𝑅𝑀𝑆 = √
∑ 𝑋𝑑(𝑗)

2𝑁𝑣
𝑗=1

𝑁𝑣

131. Robust mean absolute deviation (rmeand)

Similar to mean absolute deviation, but in this case only considering the set of intensity levels in the 

range between the 10th and 90th percentile of 𝑋𝑑.  

𝑟𝑚𝑒𝑎𝑛𝑑 = 
1

𝑁10−90
∑ |𝑋𝑑,10−90(𝑗) − �̅�𝑑,10−90|

𝑁10−90

𝑗=1

 

where 𝑋10−90 represents the set of 𝑁10−90 voxels in 𝑋𝑑 whose discretized intensity levels fall within 

the range of the 10th till the 90th percentile of 𝑋𝑑.  

132. Skewness



𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =

1
𝑁𝑣

∑ (𝑋𝑑(𝑗) − �̅�𝑑)
3𝑁𝑣

𝑗=1

(√
1
𝑁𝑣

∑ (𝑋𝑑(𝑗) − �̅�𝑑)
2𝑁𝑣

𝑗=1 )

3

133. Standard deviation

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = (
1

𝑁𝑣 − 1
∑(𝑋𝑑(𝑗) − �̅�𝑑)

2

𝑁𝑣

𝑗=1

)

1 2⁄

134. Variance

The variance of 𝑋𝑑. 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 
1

𝑁𝑣 − 1
∑(𝑋𝑑(𝑗) − 𝑋𝑑̅̅̅̅ )

2

𝑁𝑣

𝑗=1

where 𝑋𝑑̅̅̅̅  is the mean of 𝑋𝑑.

135. 10th percentile

The 10th percentile of 𝑋𝑑. 

136. 90th percentile

The 90th percentile of 𝑋𝑑 . 

137. Quartile coefficient of dispersion (qcod)

The quartile coefficient of dispersion is a robust alternative to the coefficient of variance. 

𝑞𝑐𝑜𝑑 = 
𝑃75 − 𝑃25
𝑃75 + 𝑃25

where 𝑃25 and 𝑃75 are the 25th and 75th percentile of 𝑋𝑑, respectively. 



Intensity volume histogram (IVH) features

A set of metrics derived from intensity volume histogram (IVH) representations, which 

summarize the complex three dimensional (3D) data contained in the image into a single curve, 

allowing for a simplified interpretation. The following definitions of IVH features were used: 

138. AVAIy

Volume (AV) [ml] above (i.e. with at least) an intensity (AI)

139. RVAIy

Relative volume (RV) [%] above (i.e. with at least) an intensity (AI)

140. AVRIx

Volume (AV) [ml] above (i.e. with at least) a relative intensity (RI)

141. RVRIx

Relative volume (RV) [%] above (i.e. with at least) a relative intensity (RI)

142. AIAVz

Intensity thresholds (AI) [SUV] for the Z ml highest intensity volume (AV)

143. AIRVx

Intensity thresholds (AI) [SUV] for the X% highest intensity volume (RV)

144. MIAVz

Mean intensity (MI) [SUV] in the Z ml highest intensity volume (AV)

145. MIRVx

Mean intensity (MI) [SUV] in the X% highest intensity volume (RV)

146. TLGAIy

TLG for volume (TLG) above (i.e. with at least) an intensity (AI)

147. TLGRIx

TLG for volume (TLG) above (i.e. with at least) a relative intensity (RI)

Relative steps in volume and intensity (x) are taken in 10% increments; X={10%, 20%,…, 90%}. 

Absolute steps in intensity (y) are taken in absolute [SUV] increments, e.g. 0.5; Y={0.5, 1,…, SUVmax}, 

where SUVmax is the maximum image intensity value. Absolute steps in volume (z) are taken in 0.5 ml 

increments; Z={0.5 ml, 1 ml,…, V}, where V is the tumor volume. 



Local Intensity features 

Local Intensity (LocInt) features are defined based on local intensity values around a center voxel. 

148. Local intensity peak

Mean intensity level in a 1 cm3 spherical volume, centered on the voxel with the maximum intensity 

level in the volume of interest. In case multiple voxels contain the maximum intensity level, the 

highest mean intensity level of all spherical volumes is used.  

149. Global Intensity peak

Similar to local intensity peak, but in this case the mean intensity level in a 1 cm3
 spherical volume is 

calculated for every voxel in the volume of interest. The highest mean intensity level of all spherical 

volumes is selected as the global intensity peak feature.  



Neighborhood gray tone difference matrix based features (NGTDM)

The 𝑖th entry of the NGTDM 𝑠(𝑖|𝑑) is the sum of gray level differences of voxels with 

intensity 𝑖 and the average intensity 𝐴𝑖 of their neighboring voxels within a distance   𝑑. Here, a 

complete neighborhood is not required and 𝐴𝑖 is determined over the valid voxels.    

Let: 

𝑛𝑖 be the number of voxels with gray level   𝑖, 

𝑁𝑣 = ∑ 𝑛𝑖, the total number of voxels,

𝑠(𝑖) = {
∑ |𝑖 − 𝐴𝑖|𝑛𝑖 for𝑛𝑖 > 0

0 otherwise
, generalized for any distance 𝑑, 

𝑁𝑔 be the maximum discrete intensity level in the image, 

𝑝(𝑖) =
𝑛𝑖

𝑁𝑣
, the probability of gray level 𝑖, 

𝑁𝑝, the total number of gray levels present in the image. 

150. Coarseness

𝑐𝑜𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠 = 
1

휀 + ∑ 𝑝(𝑖)𝑠(𝑖)
𝑁𝑔

𝑖=𝑖

Where 휀 is a small number to prevent coarseness becoming infinite. 

151. Contrast

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = (
1

𝑁𝑝(1 − 𝑁𝑝)
∑∑𝑝(𝑖)𝑝(𝑗)(𝑖 − 𝑗)2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

)(
1

𝑁𝑣
∑𝑠(𝑖)

𝑁𝑔

𝑖=𝑖

) 

152. Busyness

𝑏𝑢𝑠𝑦𝑛𝑒𝑠𝑠 =
∑ 𝑝(𝑖)𝑠(𝑖)
𝑁𝑔

𝑖=𝑖

∑ ∑ |𝑖𝑝(𝑖) − 𝑗𝑝(𝑗)|
𝑁𝑔

𝑗=𝑖

𝑁𝑔

𝑖=𝑖

, 𝑝(𝑖) ≠ 0,𝑝(𝑗) ≠ 0 

153. Complexity

𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
1

𝑁𝑣
∑∑|𝑖 − 𝑗|

𝑝(𝑖)𝑠(𝑖) + 𝑝(𝑗)𝑠(𝑗)

𝑝(𝑖) + 𝑝(𝑗)

𝑁𝑔

𝑗=𝑖

𝑁𝑔

𝑖=𝑖

, 𝑝(𝑖) ≠ 0,𝑝(𝑗) ≠ 0 

154. Strength

𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ =
∑ ∑ [𝑝(𝑖) + 𝑝(𝑗)](𝑖 − 𝑗)2

𝑁𝑔

𝑗=𝑖

𝑁𝑔

𝑖=𝑖

휀 + ∑ 𝑠(𝑖)
𝑁𝑔

𝑖=𝑖

, 𝑝(𝑖) ≠ 0,𝑝(𝑗) ≠ 0 



Neighboring gray level dependence matrix based features (NGLDM)

NGLDM features are invariant under spatial rotation. The (𝑖, 𝑗)th entry of the NGLDM    𝑝(𝑖, 𝑗|𝑑, 𝑎) 

describes the number of neighborhoods with center voxel gray-level (i.e. intensity value) 𝑖 and 

dependence (i.e. number of dependent voxels) 𝑘 = 𝑗 − 1. A neighborhood are all voxels within a 

distance 𝑑 from the center voxel. The center voxel and a neighboring voxel are dependent if their 

absolute gray value difference ≤ 𝑎, the dependency coarseness parameter. T

Let:

𝑝(𝑖, 𝑗) be the (𝑖, 𝑗)th entry in the given NGLDM 𝑝, generalized for any 𝑑 and 𝑎, 

𝑁𝑔 the number of discrete intensity values in the image, 

𝑁𝑑 the maximum dependence value, 

𝑁𝑠 the total number of neighborhoods, where 𝑁𝑠 = ∑ ∑ 𝑝(𝑖, 𝑗)
𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1
, 

𝑝𝑑 the sum distribution of the number of neighborhoods with dependence 𝑗 = 𝑘 + 1, where 𝑝𝑑(𝑗) = 

∑ 𝑝(𝑖, 𝑗)
𝑁𝑔

𝑖=1
, 

𝑝𝑔 the sum distribution of the number of neighborhoods with center voxel gray level 𝑖, where 𝑝𝑔(𝑖) = 

∑ 𝑝(𝑖, 𝑗)
𝑁𝑑
𝑗=1 , 

𝑝𝑛(𝑖, 𝑗) the normalized NGLDM, where  𝑝𝑛(𝑖, 𝑗) =
𝑝(𝑖,𝑗)

𝑁𝑠
, 

𝜇𝑑 the mean dependence, where 𝜇𝑟 = ∑ ∑ 𝑗𝑝𝑛(𝑖, 𝑗|𝜃)
𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1
, 

𝜇𝑔 the mean gray level, where 𝜇𝑔 = ∑ ∑ 𝑖𝑝𝑛(𝑖, 𝑗|𝜃)
𝑁𝑧
𝑗=1

𝑁𝑔

𝑖=1
.

Note: By definition, the number of voxels in the image (𝑁𝑝) equals the total number of neighborhoods 

(𝑁𝑠), since in our implementation every voxel is considered to have a neighborhood. Feature 

“dependence percentage” (
𝑁𝑠

𝑁𝑝
), which is the equivalent to run-length feature “run percentage” (RP;

70), is therefore omitted, because it will always evaluate to 1. 



155. Small Dependence Emphasis (SDE)

𝑆𝐷𝐸 =
1

𝑁𝑠
∑

𝑝𝑑
𝑗2

𝑁𝑑

𝑗=1

This feature is also called Small Number Emphasis. 

156. Large Dependence Emphasis (LDE)

𝐿𝐷𝐸 =
1

𝑁𝑠
∑𝑗2𝑝𝑑

𝑁𝑑

𝑗=1

This feature is also called Large Number Emphasis. 

157. Gray-level Non-Uniformity (GLN)

𝐺𝐿𝑁 =
1

𝑁𝑠
∑𝑝𝑔

2

𝑁𝑔

𝑖=1

158. Gray-level Non-Uniformity Normalized (GLNN)

𝐺𝐿𝑁𝑁 =
1

𝑁𝑠
2∑𝑝𝑔

2

𝑁𝑔

𝑖=1

159. Dependence Non-Uniformity (DN)

𝐷𝑁 =
1

𝑁𝑠
∑𝑝𝑧

2

𝑁𝑑

𝑗=1

This feature is also called Number Nonuniformity. 

160. Dependence Non-Uniformity Normalized (DNN)

𝐷𝑁𝑁 =
1

𝑁𝑠
2∑𝑝𝑧

2

𝑁𝑧

𝑗=1

161. Low Gray-level Emphasis (LGE)

𝐿𝐺𝐸 =
1

𝑁𝑠
∑

𝑝𝑔

𝑖2

𝑁𝑔

𝑖=1



162. High Gray-level Emphasis (HGE)

𝐻𝐺𝐸 =
1

𝑁𝑠
∑𝑖2𝑝𝑔

𝑁𝑔

𝑖=1

163. Low Gray-level small Dependence Emphasis (LGSDE)

𝐿𝐺𝑆𝐷𝐸 =
1

𝑁𝑠
∑∑

𝑝(𝑖, 𝑗)

𝑖2𝑗2

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

164. High Gray-level small Dependence Emphasis (HGSDE)

𝐻𝐺𝑆𝐷𝐸 =
1

𝑁𝑠
∑∑

𝑝(𝑖, 𝑗)𝑖2

𝑗2

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

165. Low Gray-level large Dependence Emphasis (LGLDE)

𝐿𝐺𝐿𝐷𝐸 =
1

𝑁𝑠
∑∑

𝑝(𝑖, 𝑗)𝑗2

𝑖2

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

166. High Gray-level large Dependence Emphasis (HGLDE)

𝐻𝐺𝐿𝐷𝐸 =
1

𝑁𝑠
∑∑𝑝(𝑖, 𝑗)𝑖2𝑗2

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

 

167. Gray-level variance (GLV)

𝐺𝐿𝑉 =∑∑(𝑖 − 𝜇𝑔)
2𝑝𝑛(𝑖, 𝑗)

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

168. Dependence variance (DV)

𝐷𝑉 =∑∑(𝑗 − 𝜇𝑑)
2𝑝𝑛(𝑖, 𝑗)

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

169. Dependence entropy (DE), also called Entropy

𝐷𝐸 = −∑∑𝑝𝑛(𝑖, 𝑗)log2[ 𝑝𝑛(𝑖, 𝑗)]

𝑁𝑑

𝑗=1

𝑁𝑔

𝑖=1

 



170. Second moment (SM)

𝑆𝑀 =
∑ ∑ 𝑝(𝑖, 𝑗)2

𝑁𝑑
𝑗=1

𝑁𝑔

𝑖=1



Filtered features 

Wavelet features 

Wavelet transform effectively decouples textural information by decomposing the original image, in a 

similar manner as Fourier analysis, in low– and high-frequencies. A (undecimated) three dimensional 

wavelet transform decomposes the original image 𝑋 into 8 decompositions. Consider 𝐿 and 𝐻 to be a 

low-pass (i.e. a scaling) and, respectively, a high-pass (i.e. a wavelet) function, and the wavelet 

decompositions of 𝑋 to be labeled as 𝑋𝐿𝐿𝐿, 𝑋𝐿𝐿𝐻,𝑋𝐿𝐻𝐿,𝑋𝐿𝐻𝐻,𝑋𝐻𝐿𝐿,𝑋𝐻𝐿𝐻, 𝑋𝐻𝐻𝐿 and𝑋𝐻𝐻𝐻. For 

example, 𝑋𝐿𝐿𝐻 is then interpreted as the high-pass sub band, resulting from directional filtering of 𝑋 

with a low-pass filter along x-direction, a low pass filter along y-direction and a high-pass filter along 

z-direction and is constructed as:

𝑋𝐿𝐿𝐻(𝑖, 𝑗, 𝑘) = ∑∑∑𝐿(𝑝)𝐿(𝑞)𝐻(𝑟)𝑋(𝑖 + 𝑝, 𝑗 + 𝑞, 𝑘 + 𝑟)

𝑁𝐻

𝑟=1

𝑁𝐿

𝑞=1

𝑁𝐿

𝑝=1

 

Where 𝑁𝐿  is the length of filter 𝐿 and 𝑁𝐻 is the length of filter 𝐻. The other decompositions are 

constructed in a similar manner, applying their respective ordering of low or high-pass filtering in x, y 

and z-direction. If the applied wavelet decomposition is undecimated, the size of each decomposition 

is equal to the original image and each decomposition is shift invariant. Because of these properties, 

original (tumor) segmentations can be applied directly to the decompositions after wavelet 

transform. 



Laplacian of Gaussian features 

The Laplacian of an image brings out areas of rapid intensity change and is usually used for edge 

detection. A Gaussian filter is applied prior to the Laplacian to smooth the image and reduce noise. 

Textural properties representing features of different degrees of coarseness can then be calculated. 

The equation of a Laplacian of Gaussian (LoG) with a 2D kernel:  

LoG(x, y) = −
1

πσ4
[1 −

x2 + y2

2σ2
] e

−
x2+y2

2σ2

Texture size (fine to coarse) is highlighted by modifying the Gaussian radius parameter 𝜎 (e.g., from 

0.5 mm to 5mm, with 0.5 mm increments). Each value of 𝜎 provides a filtered image. For instance 

first-order gray-level statistics (described earlier) can be determined for each filtered image, as well 

as for only the positive part of each filtered image. 




