1 Neuroimaging methods

2 T1-weighted MRI was acquired using 3T scanners manufactured by General 3 Electric (GE) and Siemens using a 3D Sagittal Magnetization-Prepared Rapid 4 Acquisition Gradient Recalled Echo (MPRAGE) sequence (number of scans=544 and 5 306 for GE and Siemens, respectively). During the analysis, two scans were excluded 6 because MRI data was unusable due to motion. Tau-PET and amyloid PET scans were 7 acquired using the PET/CT scanner by GE and Siemens operating in 3D mode (number 8 of scans=817 and 33, for GE and Siemens, respectively for tau-PET; number of 9 scans=782 and 31, for GE and Siemens, respectively for amyloid-PET). To harmonize the inter-scan difference, for PET scanners, different filters were applied to each during 10 11 reconstruction in order to harmonize resolution according to the method of Joshi et al 12 (1). For MRI scanners, we have previously shown that the effects on PET quantification are negligible (2). A CT scan was obtained for attenuation correction. For tau-PET, an 13 14 intravenous bolus injection of ~370 MBg (range 333–407 MBg) F18-flortaucipir was 15 administered, and PET/CT imaging was performed with a 20-minute PET acquisition of 16 four 5-min dynamic frames, 80-100 minutes after injection. Amyloid PET imaging was 17 performed using Pittsburgh compound B (PiB) and consisted of four 5-min dynamic 18 frames, 40–60 min after injection of 628 MBg (range 385–723 MBg) of 11C-PiB. The 19 mean and standard deviation of specific activity for the entire period that the images 20 were acquired was 2.58 (± 0.32) Ci/µmol and 3.44 (± 0.78) Ci/µmol for PiB and AV1451, 21 respectively. An iterative reconstruction algorithm was applied. Emission data were 22 reconstructed into a 256×256 matrix with a 30-cm field of view (in-plane pixel size = 1.0 23 mm). Standard corrections for attenuation, scatter, random coincidences and decay

were applied as well as a 5 mm Gaussian post-reconstruction filter. The images from
the four dynamic frames were averaged to create a single static image.

26

27 The static tau-PET image volumes of each participant were rigidly co-registered 28 to the corresponding T1-weighted MRI using 6-degree-of-freedom registration 29 ("spm_coreg") in SPM5. The automated anatomic labeling (AAL) atlas (3) was 30 normalized to the custom template (4) using the unified segmentation method in SPM5 31 giving a set of labels corresponding to the custom template space. SPM5 unified 32 segmentation (5) with a custom elderly template generated from 200 AD and 200 33 controls and tissue priors (4) was used to segment the MRI into GM, WM, CSF, and to 34 warp the atlas labels from template space to subject space. Within each subject, SPM5 35 co-registration was performed on the longitudinal series of MRI images to align to the 36 mean across all images, thus forming a new mean image, and repeated until 37 convergence (6). SUVR images were normalized to the uptake in the cerebellar crus 38 (7). For each timepoint, the tau-PET images were resampled into the space of the mean 39 MPRAGE. The regional SUVRs were calculated by measuring median uptake in each 40 ROI, excluding any voxels segmented as cerebrospinal fluid. A meta-ROI for tau-PET 41 included the amygdala, entorhinal cortex (ERC), fusiform, parahippocampal and inferior 42 temporal and middle temporal gyri (8,9). The tau-PET meta-ROI SUVR was calculated 43 as an average of the median SUVR in each region. We did not use a voxel-number weighted average for the meta-ROI SUVR calculation because the weighted average 44 45 might penalize small ROI values such as for the entorhinal cortex or amygdala, 46 anatomic regions of known early NFT accumulation. Global cortical amyloid PET SUVR

47 was computed as a voxel-number weighted average of median SUVR in each meta-ROI 48 region including the prefrontal, orbitofrontal, parietal, temporal, anterior and posterior 49 cingulate, and precuneus ROIs (9). The threshold used to define abnormal PiB PET 50 was SUVR=1.42 (9). All analysis was performed using non-partial volume corrected 51 (PVC) PET images. For comparison with non-PVC images, tau-PET with PVC was 52 evaluated. For the PVC, each PET image voxel was divided by the value in the tissue 53 mask to generate a PVC image (10) and an unsmoothed binary MRI grey matter mask 54 applied to yield a grey matter sharpened PET image.

55

56 Statistical tests

57 The association of regional OI and regional SUVR from the total cohort was 58 assessed with Pearson's correlation to evaluate the topographical relationship of the 59 two measurements. An association of OI with SUVR in the lower SUVR range (<1.5) 60 was tested using linear regression. Meta-ROI Δ SUVR for each individual was calculated 61 by subtracting the baseline SUVR from the follow-up SUVR and dividing by the time 62 difference in years. To investigate the association of OI with meta-ROI \triangle SUVR, the total 63 cohort was separated into three sub-groups (SUVR<1.29, 1.29<SUVR<1.5 and 64 SUVR>1.5) of baseline meta-ROI SUVR, further separated into low-OI (OI<0.5) and 65 high-OI (OI>0.5) group based on meta-ROI OI value. The difference of meta-ROI △SUVR between groups was tested by *post-hoc* Dunn's multiple comparison test after 66 67 non-parametric Kruskal-Wallis tests. To address different stages of the typical Alzheimer's continuum, we separated the CU participants using the amyloid positivity: 68 CU individuals with normal amyloid PET (CUA-, i.e. not in the Alzheimer's continuum) 69 70 and CU individuals with abnormal amyloid PET (CUA+, i.e. early in the Alzheimer's

71	continuum). Then, the clinical change seen in participants at the time points of the serial
72	scans were grouped as CUA-toCUA-, CUA-toCUA+, CUA+toCUA+ CUtoMCI/AD,
73	MCItoMCI, MCItoAD, and ADtoAD. Subjects for which clinical diagnosis was not
74	available were excluded from the diagnostic group analysis. The associations with
75	diagnostic change groups were assessed by post-hoc Dunn's multiple comparison test
76	after non-parametric Kruskal-Wallis tests. Analysis was performed using Matlab (version
77	9.4) and GraphPad Prism (version 9.0.0).

80 Supplemental Figure1. Intensity threshold comparison. (A) In order to determine 81 82 the intensity threshold, experimental tests were performed for various threshold levels 83 (from 1.1 to 2.2). We found that OI was easily saturated if the OI threshold was low 84 because too many voxels were included in the mask. In contrast, if a more stringent 85 threshold was applied, fewer voxels survived and the OI calculation became unstable. 86 For these higher intensity thresholds, identifying abnormal regions is not typically a 87 diagnostic dilemma and standard ROI analysis is sufficient. The threshold level used for 88 the main analysis (SUVR=1.4) was determined observationally. (B) A histogram of 89 voxel-wise SUVR values for all the gray and white matter in the brain over a cognitively 90 unimpaired group was derived. The arbitrarily determined threshold (SUVR=1.4) 91 corresponds to a right-tailed 4.68% (1.67xSD) meaning that the voxels with SUVR >1.4 92 are fairly rare in the brain of CU participants, serving as a reasonable threshold for the 93 purposes of OI calculation.

95
 96 Supplemental Figure 2. Examples of high-Ol cases. Three consecutive 3D scatter

- 97 plots in each dotted box represent tau-PET SUVR of each voxel in each scan from an
- 98 individual subject with high OI (>0.5) and low median SUVR at the first scan (<1.29).

101 102 Supplemental Figure3. Topographical pattern of overlap index. (A) For each 103 specific brain region, the median of regional OI and regional SUVR from CI cohort was 104 displayed with 95% confidence intervals. The brain regions were sorted high to low in 105 the median of regional OI. Bilateral hemispheres were used together for OI and SUVR 106 calculation. (B) Median of regional OI and SUVR illustrated in 3D rendering plot. (C) 107 The scatter plot illustrates an association between median SUVR and median OI. r 108 indicates the Pearson's correlation coefficient. The black solid line and dotted lines 109 represent a regression line and its 95% confidence band, respectively. 110

111 112 Supplemental Figure 4. Association of OI with baseline and follow-up SUVR. (A)

113 The scatterplot illustrates the association between baseline SUVR and OI for meta-ROI.

114 The dot's color indicates the overlap size. (B) The scatterplot illustrates the association

between follow-up SUVR and OI from meta-ROI. The dot's color indicates the overlap

116 size.

119 Supplemental Figure 5. Association of OI with inter-scan interval.

121122 Supplemental Figure 6. (A) Spaghetti plot of SUVR trajectory from baseline to next

123 follow-up showing meta-ROI SUVR for all individuals. The line color was coded by each

124 individual OI. (B) Spaghetti plot of SUVR trajectory showing meta-ROI SUVR for

125 SUVR<1.5 and OI<0.5. (C) Spaghetti plot of SUVR trajectory showing meta-ROI SUVR

126 for SUVR<1.5 and OI>0.5. (D) Spaghetti plot of SUVR trajectory showing meta-ROI

- 127 SUVR for SUVR>1.5.
- 128

Supplemental Figure 7. (A) Association between meta-ROI OI and meta-ROI △SUVR where baseline SUVR>1.5. The black solid line and dotted lines represent a regression line and its 95% confidence band, respectively. (B) Consistency of the OI metric. The meta-ROI OI from the first and second scans and that from the second and third scans in the cohort who had three or more time points were compared. r indicates the Pearson's correlation coefficient.

138

Supplemental Figure 8. Association of overlap index with cognitive scores. Four 142 143 cognitive domains (memory, attention, language and visuospatial) and global scores 144 (average of all domains) were tested. Only participants who had cognitive scores were included in this analysis (Supplemental Table1). (A) Relationship between meta-ROI OI 145 146 and cognitive scores. The black solid line and dotted lines represent a regression line 147 and its 95% confidence interval, respectively. r shows Pearson's correlation coefficient. 148 (B) Relationship between meta-ROI \triangle SUVR and cognitive scores. The black solid line 149 and dotted lines represent a regression line and its 95% confidence interval, 150 respectively. r shows Pearson's correlation coefficient. 151

152

153 Supplemental Figure 9. Examples of high SUVR cases. Three consecutive 3D

154 scatter plots in each dotted box represent the tau-PET SUVR of each voxel in each

- 155 scan from an individual subject. OI becomes saturated (close to 1) in the high SUVR
- 156 range because serial scans with abundant tau signals tend to be consistent.

Supplemental Figure 10. Choroid plexus bindings. High OI was frequently observed
 in the lower baseline SUVR range in hippocampus. The coronal slices show the
 baseline tau-PET, follow-up tau-PET, and their overlap mask between high-intensity
 voxels (SUVR>1.4) for three representative cases. The red arrows indicate the choroid
 plexus overlap between baseline and follow-up scans.

Case#1

Baseline clinical diagnosis: CU Meta-ROI SUVR – baseline: 1.2046, follow-up: 1.0286 Meta-ROI OI: 0

Case#3

Baseline clinical diagnosis: AD Meta-ROI SUVR – baseline: 1.7420, follow-up: 1.8856 Meta-ROI OI: 0.9843

Case#2

Baseline clinical diagnosis: MCI Meta-ROI SUVR – baseline: 1.2847, follow-up: 1.2663 Meta-ROI OI: 0.5179

Case#4

Baseline clinical diagnosis: FTD Meta-ROI SUVR – baseline: 1.0579, follow-up: 1.0208 Meta-ROI OI: 0.8018

- Supplemental Figure 11. Meninges binding. The coronal slices show the baseline
- 167 tau-PET, follow-up tau-PET, overlap mask of whole brain and overlap mask within the
- 168 meta-ROI for four representative cases. The red arrows indicate the meninges overlap
- 169 between baseline and follow-up scans.
- 170

171	Supplemental	Table 1.	Participant	demographics.
-----	--------------	----------	-------------	---------------

Baseline Characteristics	Summary
Number of participants (total)	339
Total tau-PET scans, n (%)	
2	189 (55.75)
3	129 (38.05)
>4	21 (6.19)
Time between consecutive scan, years*	
Median (IQR)	1.24 (1.04, 2.32)
Min, max	0.58, 4.32
Age at baseline PET, years	
Median (IQR)	68 (62, 76)
Min, max	33 95
Education, years {1}	
Mean (SD)	15.39 (2.66)
Male sex, n (%)	195 (57.52%)
PiB SUVR at baseline {16}	
Median (IQR)	1.72 (1.34 2.14)
Min, max	1.16 3.38
Diagnosis at baseline, n (%) {1}	
Cognitively Unimpaired	172 (50.74)
Mild Cognitive Impairment	62 (18.29)
Alzheimer's Dementia	47 (13.86)
Lewy Body Dementia	9 (2.65)
REM sleep Behavior Disorder	7 (2.06)
Frontotemporal Dementia	9 (2.65)
Posterior Cortical Atrophy	8 (2.36)
Logopenic Progressive Aphasia	2 (0.59)
Progressive Supranuclear Palsy	1 (0.29)
Progressive Fluent Aphasia/semantic aphasia	4 (1.18)
Progressive associative agnosia/prosopagnosia	1 (0.29)
Unknown	17 (5.01)
APOE ε4 carrier, n (%) {3}	128 (38.10)
Short Test of Mental Status score at baseline, median (IQR) {15}	35 (31 37)
Cognitive z scores at baseline, median (IQR)	
Global {174}	0.6906 (-0.3220 1.1513)
Memory {159}	0.6084 (-0.4529 1.3066)
Attention {165}	0.3680 (-0.4391 0.9368)
Language {159}	0.3230 (-0.4653 0.8395)
Visuospatial {170}	0.5789 (-0.0615 1.2111)

- ^{*} Based on all scans for all individuals.
- 173 {} Brackets in the characteristics column indicate the number of participants missing this
- 174 particular variable.

Baseline Characteristics	Summary
Number of participants (total)	235
Total tau-PET scans, n (%)	
2	158 (67.23)
3	67 (28.51)
>4	10 (4.26)
Time between consecutive scan, years*	
Median (IQR)	1.03 (0.98, 1.25)
Min, max	0.58, 2.92
Age at baseline PET, years	
Median (IQR)	74 (69, 79)
Min, max	56 90
Education, years	
Mean (SD)	16.32 (2.51)
Male sex, n (%)	112 (47.66%)
AV45 SUVR at baseline {75}	
Median (IQR)	1.17 (1.03 1.36)
Min, max	0.81 1.72
Diagnosis at baseline, n (%) {1}	
Cognitively Unimpaired	127 (54.04)
Mild Cognitive Impairment	78 (33.19)
Alzheimer's Dementia	30 (12.77)
APOE ε4 carrier, n (%) {6}	128 (48.47)

175 Supplemental Table 2. ADNI participant demographics.

176

^{*} Based on all scans for all individuals.

178 {} Brackets in the characteristics column indicate the number of participants missing this

179 particular variable.

Supplemental Table 3. Image IDs for ADNI cohort.

MRI_ImageID											
1573620	11084935	1655397	l1142379	1990073	11325694	1758062	11316836	1640943	11039209	l1185266	I1004681
1906797	11266356	1910675	l1184047	11153132	11019265	11068952	11006005	1801187	11222562	11325980	l1182315
I1050345	1695035	1655561	1895057	11086094	11188738	11047958	11190195	1955110	1766317	11012942	1996464
1687384	I916119	1920960	l1142367	11253141	11326332	11229050	11325533	11116518	1992457	11320847	l1169375
1848000	11060804	I594111	I1264767	11136371	11037228	l1189749	11091694	11276857	1852333	11021751	I1045984
l1001975	11244529	1883929	I1223029	11267719	11219059	11116451	11286418	1515359	1985405	l1195531	11227239
1774046	1905391	1909607	I1342083	1879552	1927354	I1263792	1956599	1775626	11154866	11328524	11046736
1854584	11060894	l1044187	1987370	I1196891	11117449	1901163	11119606	1903950	1832079	11023583	11226810
I1010814	11228309	l1225879	l1158135	1881980	1916492	I1042399	11278852	11081537	1974779	11215774	
1884806	1937847	1767926	1929044	I1025881	11116728	11215232	1984878	1520149	11020096	11329845	
I1042944	11081546	1902899	l1135165	11225896	1957103	1729610	11221363	1914038	11185714	11049755	
1835740	1974757	1860224	l1251421	1666359	11165397	1858531	11050518	1781037	11069951	11245803	
1988538	11157071	l1011352	1956815	1944327	1991861	11010150	11236425	1905324	11260118	1507327	
11270100	1876555	1569607	11275051	1849901	11211451	11173416	1925543	1794165	11186906	11056754	
1912447	11025741	1854572	1947480	1996840	1728268	1898538	11214021	1922614	11326101	11225162	
11235535	11186516	1748885	11264016	11174915	11117314	11040539	1909791	1674977	1841950	1858503	
1973293	1940882	1876699	1714589	11061844	11293452	11251515	11116890	1882274	11162407	11161837	
11160987	11132797	11020355	1942773	11259263	1527063	11014602		1727179	1530861	1839474	
11001084	1985197	11020137	11263811	11058589	1818409	11215046	11257600	1859212	1784788	11170878	
11185102	11160021	11195772	11003363	11253903	1599501	11038250	1879209	1890738	1549854	1887923	
11005735	1998447	11327210	11175340	1919238	1824980	11278681	11092240	11042463	1796487	11116406	
11227039	11170118	11092176	11003993	11058029	1709524	1908698	1980928	11219049	1573499	11229457	
11005884	11041482	11282405	11186737	1955473	1914845	11303143	11226508	1521553	1799802	1935952	
11196215	11193331	111//6/2	11030818	11117701	1952046	1892784	1977141	18/1944	1911048	11264670	
11012896	1902070	11328418	11227943	11285188	11146201	11238877	11123765	11018794	11230243	1961814	
11205679	11079424	1935824	11114881	1957065	1973541	1874427	11304066	11184723	1634514	11136571	
11016012	11267860	11274808	11296792	11281495	11214910	11033744	11092329	1508766	1861323	11299107	
11190913	1/64921	1940297	19/5/60	1936292	19/1//9	11233962	11120772	1093077	1030471	10/40/9	
1905360	1914397	11060072	11170590	11072072	11190023	1903730	11201047	1000000	10004652	11232024	
11006014	11225000	11241072	1000427	11208040	11003901	11107901	1940001	1931014	11004052	1092709	
11230721	1900000	1930011	11079905	1942019	11223000	1974104	11122101	11203330	11109303	11200100	
1303320	11007109	11279640	1004007	11250808	11106850	10/7580	11201300	11226806	1979250	11284408	
111333003	11239410	11270040	1904007	11230606	11190000	1947 309	11121047	11220090	10/ 0200	11204400	
111/0858	1033473	11029304	1122/608	11165/01	1044030	1102700	110380/1	11003831	1863101	11167318	
1969773	11072011	1874250	1634541	1996786	1654979	11179083	11261558	11180976	1703846	11200334	
11248433	1907713	1074200	1814950	11174125	1914178	1699539	11226100	11029798	1862838	1882167	
1978374	11072841	1864643	1774420	11084921	1641037	1943600	11220101	11226436	11017893	1040207	
11158785	11254369	1023178	1847364	11175032	1931962	11293823	11053608	11021434	11180387	11063917	
1989656	11037958	11184858	1582706	11045204	1884453	11040222	11280955	11199335	1928920	11258251	
11170103	11241180	1879343	1814318	11233828	11046066	11264179	11003342	11042262	11071232	11019281	
11020186	11023727	11030385	1845672	1769864	11213040	11066557	11165186	11233686	11257943	11237279	
11214052	11282313	11189912	11091790	1919448	1971712	11269091	11027771	11073644	1931630	1923853	
1925944	1820302	11274391	11285558	11053099	11195542	1859714	11207638	11243100	11073317	11075536	
11064236	11173060	11155909	1508493	11241095	11287821	11212969	11040533	1741448	11256452	1763562	
11244513	1820315	1848162	1941140	1817507	1881729	1905866	11226120	11221690	1991768	1893552	
1902659	11172863	11173479	1872012	1959742	11033364	11071981	11129344	11194945	11164436	11037531	
11060837	1905773	1831854	11190570	11278606	11185877	11276990	11293353	11023753	11000359	11225971	
1695091	11043303	11152869	11133905	11017993	11008726	1976382	1901027	11273042	11177292	11170562	
1942907	11227288	1844181	l1149150	l1194953	11177833	11189640	11234305	1744805	11003730	11333802	

Lee et al.

AV1451_ImageID											
1632551	I1111061	1678812	l1158520	1996426	11325693	1759978	I1320231	1735701	11044233	l1185100	11002757
1915198	11264643	1922853	l1175890	11153594	11037696	l1148714	11014100	1813346	11221440	11325727	11193061
11054822	1761277	l678811	1901602	11084423	11196051	11055279	11221773	11001616	1762011	l1020495	11007447
1689622	1918783	1927331	l1142357	11242137	I1326425	I1233685	I1327166	l1117126	I1001314	11320670	I1170613
1848039	11062327	l678791	11320862	11075017	I1041479	1968220	l1122345	I1281760	1855614	11033172	11064703
I1001342	11245623	l886311	I1234740	11253056	I1226872	11116637	I1290882	1555842	1985481	l1195667	11229517
1761550	1906514	I912364	I1343146	1877000	1929659	I1261995	1982149	1776104	11155676	11328673	11065699
1854548	11057549	11050819	l989161	11227883	l1117483	1890306	l1122087	l912510	l834601	I1043063	11237135
11010905	11229125	11227296	l1157437	1882211	1948378	I1044156	l1288929	I1083089	1976392	l1217092	
1886723	1944916	1779832	1929657	11033141	l1116815	I1204900	1989766	1568490	11027264	11330199	
11052023	11082590	1894432	11136606	11223547	1998996	1757685	11221516	1916462	11185997	11073021	
1844301	1981120	1861627	11294031	1716777	11175420	1871078	11057528	1781192	11111058	11245999	
1989358	11158521	11009363	1952961	1948931	11012521	11012785	11236646	1909074	11262816	1529864	
11168115	18/9/16	1645864	11290919	1855396	11215414	111/159/	1939926	1797939	11191369	11046083	
1973677	11049759	1854890	1948017	11002174	1/5/443	1899021	11231670	1935224	11327165	11228651	
11262171	11187407	1/59181	11262400	111/1298	1839801	11038465	1957413	1685059	1860730	18/3235	
1992116	1943320	18/5/98	1/221/1	11073404	11173455	11236776	11116816	1925730	11163599	11160604	
11161478	11137473	11027199	1943715	11258425	1535759	11035169	11035292	1/62010	1531824	1857653	
11020000	1994400	11020299	11203227	11072007	1020002	11213420	11202032	1009273	1/04042	1110/000	
11187329	11169561	11195806	11024097	11269070	1609338	11059605	1916758	1901721	1555841	1900852	
11002020	11005550	11323903	11103074	1920023	1032340	1016106	11000312	11004701	1790000	11133130	
11232109	11101217	11122700	11043649	11000020	1000402	1910100	11030672	11221299	10/00//	11234010	
11039770	11030033	11270030	11105015	1900000	1920043	1016264	11220347	1070000	1001320	1941009	
11047876	10168/2	11320807	11037990	11285731	111/6/6/	11256024	11014032	107 3094	11230060	1968770	
11208729	1910042	107//28	11227975	1203731	11012034	101603/	1120270	11100221	1635350	11135903	
11028622	11267876	11291668	11299208	11282375	11214947	11045199	1971992	1576858	1861365	11335357	
11020022	1729585	1973368	1979051	1943092	1991914	11266271	11118166	1894156	1640890	1921073	
1915150	11041349	11139353	11177259	1074913	11191054	1964166	11282058	1054764	1860689	11265214	
11084509	11234239	11296765	1880519	11258422	11029875	11167991	1967179	1940476	11005528	1948327	
11253775	1952534	1985145	11014149	1943916	11223593	1979045	11122296	11263013	11169969	11289208	
1966777	11067557	11122007	11185747	11070905	11037778	11175531	11282205	11037548	1665386	1959272	
11156624	11245622	11280781	1902477	11252409	11196938	1947218	11039309	11204356	1879650	11304876	
1980183	1931634	11046001	11069666	11002243	1661476	11212957	11181068	11331674	1703850	1954228	
11178524	11083272	11260274	11225478	11166025	l914338	I1005345	11051418	I1010745	1863145	11173776	
1989600	11236749	1874246	1634595	11011867	1688379	11226870	11212547	11232682	1705442	I1299329	
11215678	1933778	l1034882	1825213	11174530	1914307	1758437	l1224187	I1044452	1862881	1948324	
1994547	11086582	1865025	1609005	11027052	1715595	1945858	I1332635	11226633	11021608	l1041516	
l1176101	11254558	11023510	l850410	11174569	1931886	11277704	I1059052	11033420	11175287	11073650	
1999959	11059394	l1185226	1583146	11051880	1888176	I1063933	I1186099	I1201288	1932177	I1259707	
I1186600	11241791	1879177	1822292	I1233915	I1045791	I1230328	I1012933	I1117705	I1071356	I1053661	
l1047950	11053983	l1043841	l872314	1767719	I1214694	l1133949	l1166024	I1233963	l1258171	l1238936	
11226631	11278088	11190145	11093847	1916329	1963437	11265504	11029868	11070544	1939115	1961494	
1939955	1820839	1845498	11290884	11079242	11158513	1895899	11231589	11243166	11073656	11131610	
11070646	11173496	11158935	1522567	11246034	11276863	11214758	11056586	1758381	11256652	1770868	
11241113	1820887	1850020	1941743	1817759	1876966	1940749	11239548	11048080	1994529	1892783	
1902928	11173497	11175896	1959495	1977640	11022152	11073622	11137574	11188951	11173979	11050688	
11048797	1908216	1837132	11222949	11282723	11185959	11279368	11299304	11083271	11006574	11240834	
1/58085	11048815	11184059	19/1/4/	11040305	11048282	1984226	1920752	11185528	111//663	11168259	
1946089	11232727	1858115	11145242	11206710	111/8/41	11191368	11232729	1/6/1087	11017333	11333863	

Supplemental Table 4. Multivariate regression analysis. Each independent variable was standardized (i.e., centering and scaling) for the analysis.

Variables	Coefficient (95% Confidence interval)	P value	
Scan interval	-0.04512 (-0.06856 to -0.02168)	0.0002	
Baseline SUVR	0.2506 (0.2271 to 0.2740)	<0.0001	
Intercept	0.4881 (0.4657 to 0.5105)	<0.0001	

REFERENCES

1. Joshi A, Koeppe RA, Fessler JA. Reducing between scanner differences in multi-center PET studies. *Neuroimage*. 2009;46:154-159.

2. Schwarz CG, Wiste HJ, Gunter JL, et al. Variability in MRI and PET measurements introduced by change in MRI vendor. *Alzheimers Dement*. 2019;15:P104-P105.

3. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. *Neuroimage*. 2002;15:273-289.

4. Vemuri P, Whitwell JL, Kantarci K, et al. Antemortem MRI based STructural Abnormality iNDex (STAND)-scores correlate with postmortem Braak neurofibrillary tangle stage. *Neuroimage*. 2008;42:559-567.

5. Ashburner J, Friston KJ. Unified segmentation. *Neuroimage*. 2005;26:839-851.

6. Vemuri P, Senjem ML, Gunter JL, et al. Accelerated vs. unaccelerated serial MRI based TBM-SyN measurements for clinical trials in Alzheimer's disease. *Neuroimage*. 2015;113:61-69.

7. Lowe VJ, Lundt ES, Albertson SM, et al. Tau-positron emission tomography correlates with neuropathology findings. *Alzheimer's & Dementia*. 2019.

8. Jack Jr CR, Wiste HJ, Schwarz CG, et al. Longitudinal tau PET in ageing and Alzheimer's disease. *Brain.* 2018;141:1517-1528.

9. Jack Jr CR, Wiste HJ, Weigand SD, et al. Defining imaging biomarker cut points for brain aging and Alzheimer's disease. *Alzheimers Dement.* 2017;13:205-216.

10. Meltzer CC, Leal JP, Mayberg HS, Wagner Jr HN, Frost JJ. Correction of PET data for partial volume effects in human cerebral cortex by MR imaging. *J Comput Assist Tomogr*. 1990;14:561-570.