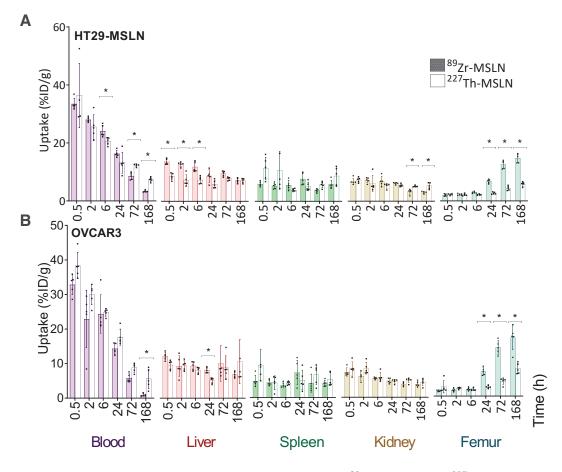
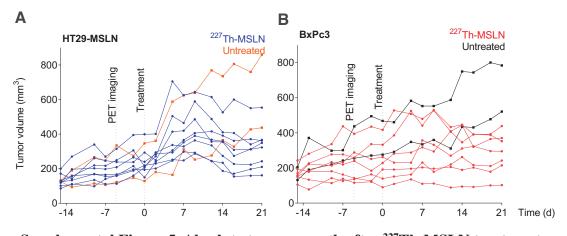

Supplemental Figure 1. 89Zr-MSLN quality control

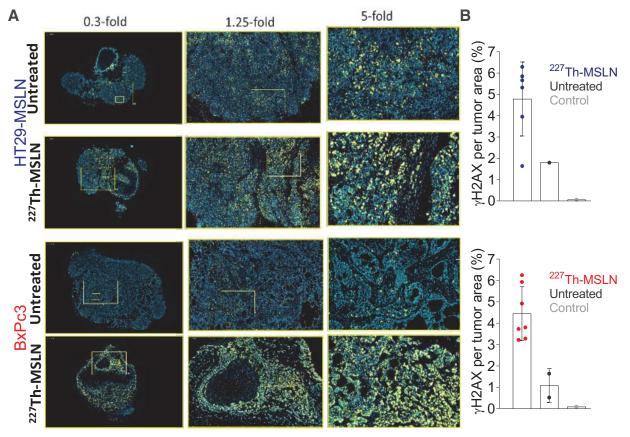
Ultra-performance liquid chromatography data of **A** optimized ⁸⁹Zr-MSLN, $4\% \pm 1\%$ antibody dimers and $15\% \pm 2\%$ radiolabeled dimers (n = 6) **B** immunoreactive fraction: 0.8 **C** 20 μ g ⁸⁹Zr-MSLN preparation with 30% radioactive dimers **D** ⁸⁹Zr-MSLN with 10% vs 60% radioactive dimers (at 280 nm \leq 5 % data not shown). On y-axis arbitrary units at 280 nm and millivolts at radioactivity detection. **E** *Ex vivo* tracer integrity of ⁸⁹Zr-MSLN in plasma 168 h pi (n = 4), determined by SDS PAGE, detected by autoradiography, R is ⁸⁹Zr-MSLN 7 days at RT, including free ⁸⁹Zr. LMW: low molecular weight. R: reference RAD: radioactivity detection Rh: recombinant human.


Supplemental Figure 2. Intratumoral ⁸⁹Zr-MSLN distribution

Mesothelin immunohistochemistry and autoradiography of HT29-MSLN formalin-fixed, paraffinembedded tumor sections, that received A ⁸⁹Zr-MSLN or B ⁸⁹Zr-control. Mesothelin immunohistochemistry and autoradiography are performed on the same tumor section. Radioactivity is simultaneously scaled in A and B from high to low ⁸⁹Zr signal intensity. MSLN, Mesothelin.


Supplemental Figure 3. Dose- and dimer-effect of ⁸⁹Zr-MSLN on tumor and healthy tissue uptake

In BxPc3 tumor-bearing mice at 168 h pi **A** *Ex vivo* tumor uptake of 4 µg 10% RD, 20 µg 30% RD, 40 µg 60% RD ⁸⁹Zr-MSLN and 20 µg 30% ⁸⁹Zr-control. **B** *Ex vivo* biodistribution of 4 µg 10% RD, 20 µg 30% RD and 40 µg 60% RD ⁸⁹Zr-MSLN. **C** *Ex vivo* biodistribution of 4 µg ⁸⁹Zr-MSLN and **D** *in vivo* tracer kinetics, expressed as radioactivity, corrected for decay, with 10% and 60% radioactive dimers. Uptake in tumor and healthy tissues is presented as percentage of injected dose per gram tissue (%ID/g), shown as mean ±SD, including single data points. ***: P <0.001 **: P < 0.01, with Bonferroni conrrection when comparing doses (A). RD: radioactive dimers.



Supplemental Figure 4. Ex vivo biodistribution ⁸⁹Zr-MSLN vs ²²⁷Th-MSLN

in A HT29-MSLN tumor-bearing mice and **B** OVCAR3 tumor-bearing mice. Blood levels and uptake in kidney, liver, spleen and intact femur of 20 μ g ⁸⁹Zr-MSLN (0.20 MBq) vs 20 μ g ²²⁷Th-MSLN (0.015 MBq) at 0.5, 2, 6, 24, 72, and 168 h. Data is presented as mean percentage injected dose per gram tissue (%ID/g) ±SD, including single data points. *: *P* < 0.05 with Bonferroni correction.

Supplemental Figure 5. Absolute tumor growth after ²²⁷Th-MSLN treatment of A HT29-MSLN tumor-bearing mice (n = 8) and B BxPc3 tumor-bearing mice (n = 7) treated with 0.75 mg/kg 500 kBq/kg ²²⁷Th-MSLN and n = 2 untreated mice per model. Tumor volumes expressed as mm³.

Supplemental Figure 6. γ H2AX expression in tumors of mice treated with ²²⁷Th-MSLN A γ H2AX immunofluorescence, marking double-strand DNA breaks, in HT29-MSLN and BxPc3 tumors of 0.75 mg/kg 500 kBq/kg ²²⁷Th-MSLN treated (n = 6-7 per group) and untreated mice (n = 1-2 per group) harvested 21 days after injection **B** and quantification expressed as % γ H2AX per tumor area. Data are mean ±SD, including single data points. Control: monoclonal mouse IgG2a antibody staining control. γ H2AX: gamma H2A histone family member X.

γH2AX immunofluorescence

DNA double-strand breaks were detected with immunofluorescence using a human-specific gamma H2A histone family member X (γH2AX) antibody (Cell Signaling, Clone JBW301, mouse), and a monoclonal mouse IgG2a antibody, clone DAK-GO5 (DAKO) was used as control (dilution 1:2000). Sections were exposed to a Cy3-labeled anti-murine-reactive antibody (Perkin Elmer; Opal[™] 4-Color Fluorescent IHC Kit). Tumor sections were counterstained using DAPI. γH2AX foci were quantified using the HS Analysis Webkit tool (HS Analysis; Karlsruhe Institute of Technology, Germany).

Supplemental Table 1: ⁸⁹Zr-MSLN development for *in vivo* studies: critical conditions

Opti	mal conditions ⁸⁹ Zr-MSLN production:				
Buffer exchange method	PD gravity filtration with HEPES 0.5 M pH 6.7				
⁸⁹ Zr labeling conditions	0.1 mg/mL MSLN-3,2-HOPO concentration				
-	250-500 MBq/mg specific activity				
	In HEPES buffer				
Purification method	PD10 gravity filtration purification, elution with:				
	10 mM histidine 130 mM glycine buffer pH 7.4				
<u>Avoid</u> the followi	ng conditions to limit radioactive dimer formation:				
Buffer exchange method	Ultracentrifugation (Vivaspin) or NaCl 0.9%				
⁸⁹ Zr labeling condition	> 0.1 mg/mL MSLN-HOPO concentration				
	< 200 MBq/mg specific activity				
	Buffers:				
	Ammonium acetate pH 7				
	• Ammonium acetate pH 5.5				
	Citrate buffer 30 mM				
	Addition of cold ⁸⁹ Zr				
Purification method	Purification by ultracentrifugation (Vivaspin)				
	PD purification with:				
	• NaCl 0.9%				
	• HEPES 0.5 M pH 7				
	EDTA addition before purification				
	Gentisic acid				
	• Tris buffer pH 8.5				
	• Sodium phosphate buffer pH 7				
	• Sodium phosphate buffer pH 8.5				
	• Histidine glycine 10/130 mM pH 8.5				
	• Glucose 5%				
	Arginine glycine 50/50 mM pH 8.5 liamine tetraacetic acid				

PD: protein desalting, EDTA: ethylenediamine tetraacetic acid.

Supplemental Table 2: ⁸⁹Zr-MSLN and ²²⁷Th-MSLN batches for *in vivo* studies

	⁸⁹ Zr-MSLN				⁸⁹ Zr-control	²²⁷ Th-MSLN
Antibody dose (µg)	4	4	20	40	20	20
Radioactive dose (MBq)	1	1	3	3	4	0.015
Radiolabeling efficiency (%)	60	60	64	92	76	99
Antibody concentration (mg/ml)	0.1	0.1	0.2	0.4	0.2	0.2
Specific activity (MBq/mg)	400	400	250	125	250	0.7
Radiochemical purity (%)	99	99	97	99	98	99
Radioactive dimers (%)	10	60	30	60	30	<10
Total antibody dimers (%)	<5	5	5	5	5	<5

Batches of 4 μ g and 40 μ g ⁸⁹Zr-MSLN were injected in the BxPc3 tumor-bearing mice (Suppl. Fig. 3), 20 μ g ⁸⁹Zr-MSLN and ⁸⁹Zr-control were injected in HT29-MSLN tumor-bearing mice (Fig. 1). The 20 μ g ²²⁷Th-MSLN was injected in HT29-MSLN tumor-bearing mice (Fig. 5).