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Nuclear Medicine and Artificial Intelligence - Best Practices for Evaluation (the RELAINCE 

guidelines) 

 

Supplemental material 

 

A. Example evaluation of AI Application: AI-based transmission-less SPECT reconstruction 

method 

In this supplementary material, we provide an illustration of applying the four-class evaluation 

framework to evaluate a hypothetical AI-based transmission-less SPECT reconstruction method.  

 

INTRODUCTION 

A major imaging-degrading effect in SPECT is the attenuation of gamma-ray photons as they pass 

through the patient. Attenuation compensation (AC) is considered a pre-requisite for reliable 

quantification and beneficial for visual interpretation tasks in SPECT (1). Typical AC methods require 

the availability of an attenuation map, often obtained using a transmission scan, such as an X-ray CT 

scan. However, this has several disadvantages, such as increased radiation dose, higher costs, and 

possible misalignment between SPECT and CT scans. To address this issue, multiple AI-based 

transmission-less AC methods for SPECT are being developed. Here we provide a manual to evaluate 

one such hypothetical AC method using the four-class evaluation framework proposed in the main 

manuscript. We assume that this hypothetical method has been developed for myocardial perfusion 

SPECT (MPS). For purposes of illustration, we assume that this method, similar to published 

approaches (2,3), is a deep-learning (DL)-based approach that uses scatter-window projections to 

estimate the attenuation map. This attenuation map along with the photopeak data are then used to 

reconstruct the activity map using an ordered subsets expectation maximization (OSEM)-based 

approach. The manual we provide focuses on the evaluation and not the development of this method. 

For development, best practices as laid out in Bradshaw et al (4) are recommended. 

In the discussion below, we will compare our approach with two other AC approaches in SPECT. 

The first approach uses CT-derived attenuation maps for AC, where the CT can be obtained from a 

dual-modality SPECT/CT system. This approach is well suited to provide a reference standard when a 

gold standard is unavailable. The second approach is the Uniform AC method, which uses a uniform 

attenuation map. The approach is widely used for AC when the attenuation map is unavailable. The 

Uniform AC method we consider is OSEM-based. In the text below, we denote the deep learning-based 

AC, CT-based AC, and Uniform AC approaches by DLAC, CTAC, and UniformAC, respectively. 

 

PROOF-OF-CONCEPT EVALUATION 

Objective of Evaluation 

Demonstrate that the hypothetical DLAC method has promise for further evaluation on clinical 

tasks. 
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Study Design 

 Data collection. For POC evaluation, the evaluator could consider using an existing database of 

patient images at a medical center on a single scanner. The database should consist of the SPECT 

projection data in photopeak and scatter windows and the CT scans for these patients, preferably 

acquired along with the SPECT images. The database should be randomly sampled to define the 

dataset for this study. This projection data will then be reconstructed using the hypothetical DLAC 

method to obtain the reconstructed activity images. 

 

 Defining reference standard. The reconstructed activity images from the CTAC approach are 

considered as the reference standard. 

 

 Testing procedure. To demonstrate technological innovation, the evaluator should evaluate their 

method with state-of-the-art and with commonly used methods. The state-of-the-art method would be 

the CTAC-based approach. The commonly used method would be the UniformAC approach that is 

OSEM based and assumes a uniform attenuation map. The activity map derived using the DLAC and 

UniformAC approaches should be compared with the reference standard CTAC-based approach. 

 

 Figure of merit. The FoMs to demonstrate technological innovation and promise could include the 

normalized root mean square error (RMSE), structural similarity index (SSIM), and peak signal-to-

noise-ratio (PSNR), along with the corresponding confidence intervals.  

 

Example Claim 

A deep learning-based transmission-less SPECT reconstruction method for myocardial perfusion 

SPECT evaluated on patients acquired on a single scanner from a single center yields SSIM of Y (95% 

CI) and PSNR of Z dB (95% CI) with the reference standard as CTAC method. The proposed method 

significantly outperformed the UniformAC method in terms of SSIM and PSNR (p-value < 0.05).  

 

TECHNICAL TASK-SPECIFIC EVALUATION 

Objective of Evaluation 

A major clinical task for which MPS images are acquired is detecting perfusion defects. We 

describe the procedure to quantify technical efficacy on this detection task.  

 

Study Design 

A virtual clinical trial provides a rigorous mechanism to conduct this technical evaluation. We 

describe the study design for a virtual clinical trial-based evaluation: 

 

 Data collection. Anthropomorphic phantoms, such as the 3-D extended cardiac and torso 

phantom, can be used to generate the ground truth patient activity and attenuation maps. The 

generated patient population should preferably be representative of those seen in clinical practice and 
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have variation in biological properties, including height, weight, and organ shapes and sizes. The 

patient population should consist of those with and without cardiac defects and prevalence of the defect 

should preferably be as observed in clinical practice. For the purpose of having a clinical realistic defect 

variation, defects of different sizes, severities and locations should be simulated. Tracer uptakes should 

be assigned to various region, according to clinical guided distributions, yielding the simulated digital 

activity maps. The true attenuation maps can be generated using the 3-D extended cardiac and torso 

phantom, where the attenuation coefficients are defined at 140 keV, since the tracer used in MPS 

studies, Tc-99m, emits photons at that energy.  

Next, a 3D clinical SPECT system used to acquire MPS images should be accurately simulated. 

One software to simulate these systems accurately is SIMIND, a photon-tracking-based software (5). 

The acquisition process should simulate clinical protocols. MPS scans are typically conducted with low 

energy high-resolution collimators and with NaI-based detectors. Further, the SPECT projections are 

often obtained at 60 angles uniformly spaced over 180 degrees from left posterior oblique to right 

anterior oblique modeling body-contouring orbits. For the DLAC method, projection data should be 

obtained in both the photopeak (126-154 KeV) and the scatter window (90-122 KeV). The projection 

data should then be reconstructed using the DLAC, CTAC and UniformAC methods. 

 The workflow of virtual clinical trial is shown in Supplemental Figure 1. 

 Defining a reference standard. Since this is a simulation study, the presence or absence of the 

defect is known and will thus provide the reference standard. 

 

  Process to extract task-specific information. In the evaluation study dataset, the defects vary in 

activity uptake, shape, and locations, leading to signal variability. Similarly, variation in the shapes and 

sizes of the other organs, activity uptake through the rest of the body, and variation in patient 

anatomies leads to background variability. Therefore, this is a signal known statistically/background 

 

Supplemental Figure 1. The workflow of the virtual clinical trial. 
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known statistically (SKS/BKS) task. To avoid bias due to observers, we recommend choosing an 

optimal observer. One such option could be trained nuclear medicine physicians, but that may make 

these studies logistically challenging. Another option is numerical observers. One such numerical 

observer was proposed by Li et al. precisely for this SKS/BKS task (6). To use this observer, Li et al 

cropped the reconstructed activity maps with the centroid of heart at the center of images, and then 

windowed the intensity values so that the range [0, maximum in the heart] was mapped to the range 

[0,255]. Then, the testing data was divided into sub-ensembles according to the defect types. The 

numerical observer that is chosen will yield test statistics. By varying a threshold for these test statistics, 

the images will be classified into diseased and healthy-patient category. Next, using the knowledge of 

the ground truth, receiver operating characteristic (ROC) curves can be plotted. This observer study 

can be conducted with both CTAC and UniformAC approach. 

 

  Figures of merit. ROC curves. The area under the ROC curve (AUC), along with the 

corresponding confidence intervals, should be reported for this technical evaluation study. Delong’s test 

can be used to evaluate if the difference in AUCs using the different methods was statistically 

significant. 

 

Example Claim 

A deep learning-based transmission-less SPECT attenuation compensation (AC) method for 

myocardial perfusion SPECT was non-inferior to a CT-based AC method on the task of detecting 

perfusion defects with 80% power and a significance level of 5%. The AUC difference was within a pre-

defined margin of 0.1/0.05. 

 

CLINICAL EVALUATION 

Objective  

Evaluate the efficacy of the hypothetical DLAC method for transmission-less AC in MPS in 

diagnosing patients with coronary artery disease (CAD).  

 

Study Design 

 Study type. MPS images are acquired to make diagnostic decisions and not direct therapeutic 

interventional recommendations. Based on the flowchart in Fig. 5 of the main paper, a blinded 

retrospective study is chosen for clinical evaluation. 

 

  Data collection. The collected data should be from an external cohort. One strategy is to first 

obtain a database of patients who underwent clinical MPS scans. This institution should be different 

from the institution that provided the data to train the method. The database should again be 

representative of patient populations, including patients with different ages, sexes, ethnicities, and BMI. 

The database should contain projection data in photopeak and scatter windows and the CT scans. The 

database should then be randomly sampled to define the dataset for the evaluation study. The 
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projection data from this dataset are input to the DLAC approach, yielding the activity maps. These 

projection data are also used to obtain the activity maps with the CTAC and UniformAC approach. 

 

 Defining reference standard. Since we do not know if a patient in this database has CAD or not, 

we need to define a reference standard. For this purpose, one approach is to use the SPECT images 

reconstructed with the CTAC approach. These images could be evaluated by a panel of physicians to 

diagnose if the patient has CAD. The physicians would be provided additional information as required 

to make this diagnostic decision, such as other clinical-test results or past patient history. Based on the 

panel consensus, the patients are classified as those with positive and negative CAD diagnosis.  

 

 Sample size. A power-analysis is recommended to compute the sample size, where the inputs 

could be from the proof of concept and the technical efficacy studies.  

 

 Reader studies. The evaluation study can be a two alternative forced choice study. In this study, 

one could have a panel of experienced physicians, who were not involved in the development of the 

algorithm or defining the reference standard, be presented two images: one from a patient with positive 

CAD diagnosis and the other from a patient with a negative CAD diagnosis. The physicians would be 

asked to diagnose which of the two patients has CAD. Additional information as required to make this 

diagnostic decision, such as other clinical-test results or past patient history would be provided to the 

physicians. With the reference standard obtained as defined earlier, accuracy for this diagnostic task 

could be calculated. It can be shown that this accuracy is equal to AUC for this task (7). 

 

 Figure of merit. One choice for FoM is the AUC for diagnosing CAD, which quantifies the accuracy 

of diagnosis. The confidence intervals should also be reported for the FoM. 

 

Example Claim 

The average AUC of three experienced physicians on the task of diagnosing coronary artery 

disease by reading myocardial perfusion SPECT images increased from X to Y (increase of ΔAUC 

(95% confidence intervals)) when these images were reconstructed using a deep learning-based 

transmission-less AC method as compared to UniformAC method, as evaluated in a blinded 

retrospective study with clinical patient data collected from two institutions. The reference standard for 

this study was obtained by three separate readers who read the perfusion SPECT images 

reconstructed with a CT-based AC approach.  

 

POST-DEPLOYMENT MONITORING 

Objective 

Evaluate the performance of the DLAC method for an off-label study, namely, AC for quantitative 

dopamine transporter (DaT) scan SPECT.  
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Evaluation Strategy 

As this is a different clinical application, the algorithm first needs to be trained. For this purpose, 

best practices as laid out in Bradshaw et al (4) are recommended. Here we focus on the evaluation of 

the algorithm. We will lay out a strategy for technical task-specific evaluation, where the clinical task is 

to quantify the activity in the putamen and caudate. 

 

 Data collection. The dataset used in the off-label evaluation could be from a DaTscan SPECT 

patient data repository collected on a single scanner from a single center. The patients in this database 

should be representative of those seen in clinical practice with variations in biological properties, such 

as genders, ages, ethnicities, and head sizes. The database needs to be randomly sampled to select 

patients. For the selected patients, the CT images, and projection data both in photopeak (143-175 

KeV) and scatter windows (90 – 143 keV) would be selected. 

 The projection data is then reconstructed using the DLAC, CTAC and UniformAC methods 

following a similar approach as described in the previous sections but following the clinical protocols for 

a DaTscan SPECT study. 

 

 Defining the reference standard. The reference standard for this quantification task is the uptake 

in the caudate and putamen region. Since this is a clinical study, the ground-truth uptake values are 

unavailable. To address this issue, the reference standard can be defined from the images 

reconstructed using the CTAC approach. To define the reference standard, the caudate and putamen 

regions need to be segmented from the DaTscan SPECT images. For this purpose, a consensus-

based study may be considered where a panel of physicians provide a consensus segmentation for 

these regions on images obtained with the CTAC approach. The mean activity uptake in the defined 

left/right caudate and putamen would then define a reference standard.  

 

 Process to extract task-specific information. Our goal here is to estimate the uptake in the caudate 

and putamen region from these images. For this purpose, on the reconstructed images, we could have 

a panel of physicians, who were not involved in training the method or defining the reference standard, 

define the boundaries of the caudate and putamen regions. The uptake in these regions will provide the 

required quantitative values. The same approach could be followed for the images reconstructed with 

the UniformAC approach. 

 

 Figure of merit. Ensemble bias and ensemble mean square error of regional activity uptake 

obtained by the DLAC/UniformAC method compared with the CTAC method, along with the 

corresponding confidence intervals.  

 

 No-gold-standard evaluation. As mentioned in the main text, another approach to evaluate these 

methods on the quantitative task of measuring regional uptake is no-gold-standard evaluation. In this 

evaluation, the average activity in each region obtained by the DLAC, UniformAC, and CTAC methods 



THE JOURNAL OF NUCLEAR MEDICINE • Vol. 63 • No. 9 • September 2022  Jha et al. 

 

are calculated. These regional uptake values are then input to the no-gold-standard evaluation 

technique, which can then rank the different methods on the basis of precision without availability of 

ground-truth quantitative values.  

 

Claim 

The normalized bias of regional activity uptake in the striatal regions obtained with an AI-based 

transmission-less AC method was X% (95% C.I.) as evaluated in a blinded retrospective study 

conducted by three readers with data from a repository of patients who underwent DaTscan SPECT on 

a single scanner in a single center, and where the reference standard was defined as the striatal uptake 

values computed on the images reconstructed with CT-based AC. Further, the method significantly 

outperformed the UniformAC method on the quantification task (p-value < 0.05). 

 

B. Evaluation of continuous-learning AI-based algorithms 

Typically, AI-based clinically available medical devices are locked prior to marketing. However, the 

performance of these algorithms may degrade when they encounter patient populations, scanners, 

clinical protocols or other situations different from their training set (8). To address this issue, 

researchers have proposed the continuous-learning (CL) approach (9). This approach aims to model 

the flux or inherent skewness of real-world data to incrementally fine tune model performance. 

However, CL approaches have to deal with multiple challenges including catastrophic forgetting 

(whereby, the AI forgets previously learnt information upon learning new information) , skewness in the 

distribution of the sequentially incoming stream of new data (9), and concept drift. Thus, there is an 

important need for rigorous evaluation of these methods before clinical deployment.  

To illustrate an example evaluation strategy, consider an AI-based PET-denoising algorithm that 

uses the CL approach to account for data drift. The network is deployed at time point t0. Post-

deployment, it is observed that the patient BMIs are more diverse than in the training set. Thus, to 

account for this change in patient’s BMI, the algorithm is retrained at time point t1. At a later time point 

t2, the PET scanner reconstruction algorithms are updated. The PET denoising algorithm is again 

trained to account for this. Consider an FoM that quantifies performance at each time step on some 

clinically relevant task. Then we can formulate a 3x3 accuracy matrix (10) whose entries, Rij, quantify 

performance on the test set at time step ti for the update at time point tj. Using this matrix, we can 

measure the influence that the retraining has on performance with previous test sets. This performance 

can be quantified as the average of R1,0 - R0,0, R2,0 – R0,0, and R2,1 – R1,1. This measure, referred as 

backward transfer, quantifies the forgetting of the AI product through its lifecycle of incremental 

learning. Analogously, a forward transfer measure can determine the influence that learning a task has 

on the performance of future tasks (average of the terms R1,0, R2,0, R2,1). 

We note that most CL-based deployment insights are in the context of proof-of-concept 

implementations (11,12) and their use for nuclear-medicine requires further research. For CL 

evaluation, construction of bias-free external test sets and harmonization of data heterogeneity for 

digital health are needed. Hence, we recommend that a CL-enabled device be evaluated using the 

https://arxiv.org/pdf/1706.08840.pdf
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framework as discussed in the main paper, with the participation of various stakeholders, who will have 

to finalize benchmark datasets, FoMs and basic ground rules such as the frequency of updates, test 

sets, robustness in cyber-security, countermeasures against reverse engineering, traceability of patient 

data/model parameters and so on at every successive modular update before clinically deploying a CL 

model. We envision that multi-institutional data repositories such as the Medical Imaging and Data 

Resource Center, that exhibit optimal standardization, curation and compliance with ethical 

responsibilities to honor patients' privacy will play a key role in evaluation of CL methods.  

Overall, the CL paradigm aims to rectify flaws of the current static AI algorithms in digital 

healthcare. However, careful evaluation is required to thoroughly validate the use of CL in nuclear 

medicine.  

 

C. Figures of merit for evaluating performance in proof-of-concept studies 

Supplemental Table 1 provides a list of figures of merit (FoMs) for evaluating performance in proof-

of-concept studies for different applications of AI.  

Supplemental Table 1: A list of FoMs for proof-of-concept evaluation studies 

Application Evaluation figures of merit 

Instrumentation Percent improvement in timing or spatial resolution or sensitivity 

Reconstruction and image 

enhancement 

Mean squared error, Structural similarity index, peak signal to 

noise ratio, Contrast-to-noise ratio 

Image registration 
Mean squared error, Structural similarity index, Mutual 

information 

Segmentation 
Dice scores, Jaccard distance, Hausdroff distance, Fraction of 

voxels accurately classified 

 

 

D. Table of figures of merit for evaluating performance on clinical tasks 

Supplemental Table 2 provides figures of merit for technical and clinical evaluation. Figures of merit 

for detection/classification tasks to demonstrate technical efficacy can also be used as figures of merit 

for clinical evaluation on diagnostic tasks.  
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Supplemental Table 2: A list of FoMs to evaluate performance on clinical tasks 

Type of 

task 

Evaluation 

criterion 
Figure of merit Description 

Range 

and 

Target 

Notes 

2-class 

classification 
 

Accuracy 
 

Sensitivity/Sensitivity 

Sensitivity: Ability to correctly identify 

positive cases based on a cut-off 

Specificity: Ability to correctly identify 

negative cases based on a cut-off 

[0; 1] 

1 

Not influenced by disease prevalence. 

Requires a priori choice of cut-off. Sensitivity 

and specificity should be used in 

conjunction. 

Youden index = sensitivity + 

specificity -1 
Sensitivity + specificity -1 

[-1; 1] 

1 

Not influenced by disease prevalence. 

Requires a priori choice of cut-off. 

AUC: Area under the ROC 

curve 

Overall classification accuracy, regardless 

of the cut-off value. 

[0; 1] 

1 
Not influenced by disease prevalence. 

Likelihood ratio for positive 

test results = sensitivity / (1-

specificity) 

Likelihood that an image is classified 

positive in truly positive images compared 

to negative images 

[0; ∞] 
 

Not influenced by disease prevalence. 

Requires a priori choice of cut-off. 

Likelihood ratio for negative 

test results = (1-sensitivity) / 

specificity 

Likelihood that an image is classified 

negative in truly positive images 

compared to negative images 

[0; ∞] 
 

Not influenced by disease prevalence. 

Requires a priori choice of cut-off. 

F1-score = 2. 

(precision.recall)/(precision+

recall) 

A weighted average of precision and 

recall 

[0; 1] 

1 

F1 ignores the true negatives and is only 

relevant when the true negatives do not 

matter 

Balanced accuracy Average of specificity and sensitivity 
 

[0; 1] 

1 

Of interest when data is unbalanced; crude 

measure of accuracy; Requires a priori 

choice of cut-off 
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Matthew’s correlation 

coefficient 

MCC= (TP x TN - FP x FN) / 

squareroot[(TF + FP) x (TP + FN) x (TN + 

FP) x (TN + FN)] 

[-1; 1] 

1 

Takes into account true and false positives 

and negatives and is generally regarded as 

a balanced measure which can be used 

even if the classes are of very different 

sizes. No intuitive interpretation; Requires a 

priori choice of cut-off 

Positive predictive value 

(PPV)/Negative predictive 

value (NPV) 

PPV and NPV are probability that cases 

classified as positive(negative) are truly 

positive (negative) based on a cut-off, 

respectively. 

[0; 1] 

1 

Largely influenced by disease prevalence; 

Requires a priori choice of cut-off 

Precision-recall AUC 
Overall classification accuracy, regardless 

of the cut-off value. 

[0; 1] 

1 

Hypothesis testing methods/software are 

sparse. 

N-class 

classification 
Accuracy 

Sensitivity and false positive 

rate from the N x N 

confusion matrix 

For each class, sensitivity (false positive 

rate) is the proportion of correctly 

(incorrectly) classified subjects 

[0; 1] 

1 

Each class has an associated sensitivity and 

FPR. Requires a priori choice of cut-

off.  Does not account for types of false 

classifications. 

Area under the N-

dimensional ROC curve 

Expansion of the traditional ROC curve to 

N dimensions 

[0; 1] 

1 
Not influenced by disease prevalence. 

Brier score 
Measures accuracy of probabilistic 

predictions 

[0; 1] 

0 
Can also be applied to 2-class classification 

Quantification Bias 

Mean Bias 
The mean difference between measured 

and true value 

[-∞; +∞] 

0 

Unscaled measure of the algorithm’s 

tendency to over- or under-estimate the true 

value. 

Proportional Bias 
Slope of the regression line of true vs 

measured values 

[-∞; +∞] 

1 

There is proportional bias when slope ≠1 

which must be accounted for when 

measuring change over time. 
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Bias profile Plot of bias over a range of true values  
Should be used to evaluate and illustrate 

when the bias changes over the true value 

Ensemble bias 
Average bias over the entire range of true 

values 

[-∞; +∞] 

0 

Should be used when the bias changes over 

the true value 

Precision 

Standard deviation 

Closeness of replicate measurements to 

each other when repeating the 

measurements in exactly the same setting 

[0; +∞] 
 

Best used when the SD is constant over the 

range of measurements 

Coefficient of variation 
SD divided by the square root of the 

mean of the measurements 

[0; +∞] 

0 

Best used when the SD is proportional to 

the magnitude of measurements. 

Precision profile 
Plot of standard deviation (or CV) over a 

range of true values 

 
Should be used when standard deviation (or 

CV) changes as function of true value 

Ensemble standard 

deviation 

Average standard deviation over the 

entire range of true values 
[0; +∞] 

Should be used when standard deviation 

changes as function of true value 

Reliability Root Mean Square error 
Summary FoM that quantifies both bias 

and precision 

[0; +∞] 

0 
Informs about bias and variability 

Repeatability 

Reproducibility 
 

Repeatability Coefficient 

Repeatability: Closeness of replicate 

measurements on the same subject when 

the same imaging methods were used. 

Reproducibility: Closeness of 

measurements on the same subject when 

different imaging methods were used (i.e., 

different scanner, image analysis 

software, technician, etc). 

[0; +∞] 

0 

Describes the smallest difference between 

two measurements that can be considered a 

real change with 95% confidence, when 

there is no change in imaging methods. 

Reproducibility Coefficient 
[0; +∞] 

0 

Describes the smallest difference between 

two measurements that can be considered a 

real change with 95% confidence, when 

different imaging methods were used. 

Quantification 
Limits of 

agreement 
Bland Altman analysis 

Quantify the agreement between a 

proposed method and a reference 

standard 

 
Preferred when the reference standard may 

be erroneous 
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Combined 

detection/ 

localization 

Accuracy 
Area under the localization 

ROC 

Accuracy in correctly detecting and 

locating the lesion 

[0; 1] 

1 
Limited to one lesion per subject 

Accuracy Area under the FROC curve 
Accuracy in correctly detecting and 

locating lesions 

[0; 1] 

1 

Multiple lesions per subject; summary index 

difficult to interpret 

Accuracy 
Area under the ROI-ROC 

curve 

Accuracy in correctly detecting and 

locating lesions within mutually exclusive 

ROIs (e.g. lung lobes, colon segments, 

breasts) 

[0; 1] 

1 

Multiple lesions per subject; summary index 

has interpretation similar to traditional ROC 

area. 

Accuracy 
Area under the estimation 

ROC curve (AUEROC) 

Accuracy in correctly detecting and 

quantifying parameters about the lesion 

[0; 1] 

1 

Generalizes to any joint detection-estimation 

task 

Prediction of 

Future Events 

Probability of 

occurrence of 

an event 

Survival curve 
A plot of the percent of patients that are 

event-free as a function of time 
 

Can be used for time until any event, such 

as death, onset of disease, disease re-

occurrence. 

Probability of 

occurrence of 

an event 

Kaplan-Meier estimator 

Non-parametric FoM used to estimate the 

fraction of patients that are event-free at a 

certain timepoint 

 
Often used to compare survival of two or 

more cohorts of patients. 

Likelihood of 

Future event 
Prediction risk score 

A semi-quantitative risk score that 

describes the likelihood of a future event 

taking place based on patient-specific 

inputs to an algorithm 

 

Binary, ordinal, or continuous value.  Often 

probability based E.g. A score that 

describes the likelihood of a disease 

occurring in the future 

Time of future 

event 
Predictive interval 

Time interval for which a future event is 

estimated to occur based on patient-

specific inputs to an algorithm 

  

Time of future 

event 

Median time of a future 

event 

Median time until future event for typical 

patient, usually based on longitudinal data 

from a cohort of patients. 

 Not patient-specific 
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