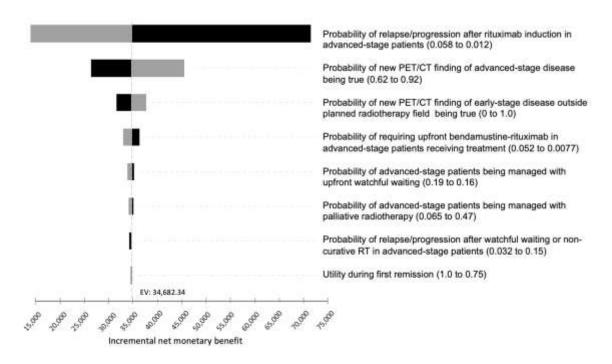
Expanded Methods

Transition probabilities

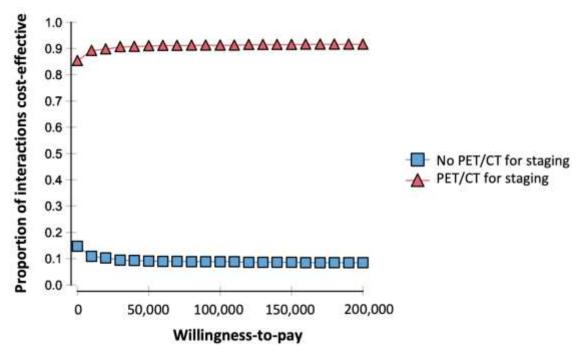
The probabilities used in the model are shown in Supplemental Table 1. The diagnostic probabilities of PET/CT were derived from a study by Wirth et al. assessing the impact of PET/CT on early-stage FL (13). In this study, 42 patients were found to have early-stage FL on conventional CT and subsequently had a staging PET/CT; based on this PET/CT, 13 (31%) patients were upstaged to advanced-stage disease, 6 (14%) remained classified as early-stage disease but required enlargement of the RT field to encompass findings that were not seen on the conventional CT, and 23 (55%) had no new findings. Of the 13 patients who were upstaged to advanced-stage, 8 (62%) were confirmed to be true positives either by biopsy (N=3), subsequent disease failure that was consistent with the PET abnormalities (N=3), or retrospective identification of missed abnormalities on CT (N=2); one (8%) had an apparent false positive with bilateral symmetrical uptake in hilar lymph nodes that was later found to be reactive rather than malignant; and the other 5 (36%) had no confirmation. Thus, to conservatively estimate the uncertainty of the probability of a new PET/CT finding of advanced-stage disease, a uniform distribution ranging between 62% (8/13) and 92% (12/13) was used in sensitivity analysis. Of the 6 patients whose RT fields required enlargement, none of them had a biopsy or other means to confirm whether these additional suspicious findings were true disease involvement (13). Similarly, a uniform distribution ranging between 0% (0/6) and 100% (6/6) was selected for the probability of early-stage disease truly outside the planned RT field for those in whom this was diagnosed on PET/CT.

Probabilities reflecting disease course were derived from randomized controlled trials (RCTs) if available and cohort studies if no relevant RCTs had been published. The overall response rate to bendamustine-rituximab was 93% according to a RCT by Rummel et al (19). A lower response rate to bendamustinerituximab of 88% was modeled in individuals who received rituximab monotherapy (23). The probability of progression after bendamustine-rituximab according to Rummel et al.'s trial was 6.8% per 6-month cycle, but the trial was performed without rituximab maintenance; on the basis of the PRIMA trial, the progression probability of Rummel et al.'s study was adjusted by the hazard ratio for progression on rituximab maintenance versus watchful waiting (hazard ratio, 0.60). Since a progression-free survival benefit from maintenance therapy might not be similarly preserved after bendamustine-rituximab (which has not been tested in clinical trials), this possibility was explored in sensitivity analyses. The response rate after second-line therapy (i.e., salvage chemotherapy #1) was 85% based on a study by van Oers et al (20). A 20% penalty was applied to the response rate with each subsequent line of salvage chemotherapy, which was explored in sensitivity analyses. The probability of progression after salvage chemotherapy #1, #2 and #3 were assumed to be constant (23).

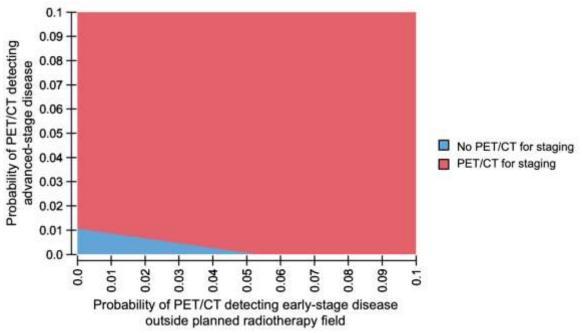
The baseline estimates of advanced-stage patients managed with watchful waiting and radiotherapy were 17.7% and 5.6%, based on the National LymphoCare Study, a multicenter, longitudinal observational study of 2,728 patients with FL (14). Of advanced-stage patients receiving treatment, the baseline estimate of patients requiring bendamustine-rituximab was 3.0%, derived from the proportion of patients in a population-based CT-staged early-stage FL cohort (*3*) meeting criteria for first-line bendamustine-rituximab per Rummel et al.'s trial (*19*). The remaining advanced-stage patients were treated with rituximab monotherapy. The probabilities of advanced-stage patients being managed upfront with watchful waiting vs. bendamustine-rituximab vs. rituximab monotherapy were explored in sensitivity analyses.


Of early-stage patients who relapse after potentially curative RT, the proportion of patients treated with bendamustine-rituximab was based on a multicenter retrospective study showing that 24% of patients in this setting had systemic therapy (15); this estimate was explored in sensitivity analysis. For early-stage patients who did not receive potentially curative RT, rate of relapse requiring bendamustine-rituximab was 2.9% per 6-month cycle, derived from a large population-based study by Barzenje et al (16).

Utilities and Costs


Drug acquisition costs for rituximab and bendamustine were determined from Canadian cost analyses (*33,38*). Supportive drug costs were obtained from hospital pharmacies. Pharmacy and nursing costs were obtained from hospital human resources departments. Resource utilization and overhead costs were extracted from published guidelines and statistics (*33-35*). Cost of medical visits, laboratory and imaging investigations were derived from the 2019 Ontario schedules of benefits for physician and laboratory services (*32,36*). The costs associated with adverse events were derived from the literature and incorporated into the total systemic therapy costs (*37*).

The cost of salvage chemotherapy was derived from a cost analysis by Herold et al (*39*). The cost of 6 cycles of rituximab was added only to the first course of salvage chemotherapy since patients would likely not receive rituximab with subsequent chemotherapy lines. The cost of palliation per 6 months was based on a Canadian costing study (*40*).


Figures

Supplemental Figure 1. Tornado diagram of incremental net monetary benefit (NMB) for PET/CT relative to the no-PET/CT strategy with a willingness-to-pay of \$100,000/QALY. A positive incremental NMB means that PET/CT is the preferred strategy, while a negative value would mean no-PET/CT is preferred. For all parameters, we see that PET/CT is preferred across the full range of values. The gray shade depicts the higher end of stated range and the black shade depicts the lower end of the stated range.

Supplemental Figure 2. Cost-effectiveness acceptability curve, showing the proportion of simulations from the probabilistic sensitivity analysis in which each strategy was the cost-effective strategy, at different willingness-to-pay thresholds. This can be interpreted as the probability that each strategy is cost-effective

Supplemental Figure 3. Two-way sensitivity analysis on probabilities of PET/CT detecting new findings, evaluating net monetary benefit at a willingness-to-pay threshold of \$100,000/QALY

Tables

Supplemental Table 1. Model parameters: probabilities and utilities normalized to a 6-month period

month period					
Parameter	Mean	Standard deviation	Distribution	References	
Diagnostic probabilities					
Probability of PET/CT	0.55	0.076	Beta	(13)	
having no impact on					
planned RT					
Probability of PET/CT	0.14	0.053	Beta	(13)	
detecting early-stage					
disease outside planned RT					
field					
Probability of PET/CT	0.31	0.070	Beta	(13)	
detecting advanced-stage					
disease					
Probability of new PET/CT	Minimum: 0		Uniform	(13)	
finding of early-stage	Maximum: 1.0)			
disease outside planned RT					
field being a true positive					
Probability of new PET/CT	Minimum: 0.6		Uniform	(13)	
finding of advanced-stage	Maximum: 0.92				
disease being a true positive		1			
Disease course					
probabilities					
Probability of advanced-	0.18	0.0073	Beta	(14)	
stage patients being					
managed with upfront					
watchful waiting					
Probability of advanced-	0.056	0.0045	Beta	(14)	
stage patients being					
managed with palliative-					
intent RT					
Probability of requiring	0.030	0.011	Beta	(3)	
upfront bendamustine-					
rituximab in advanced-					
stage patients receiving					
treatment					
Probability of relapse after	0.037	0.015	Beta	(7)	
potentially curative RT					
Probability of relapse after	0.24	0.043	Beta	(15)	
potentially curative RT					
being treated with					
bendamustine-rituximab					
(vs. watchful waiting)					
Probability of progression	0.029	0.015	Beta	(16)	
requiring bendamustine-					
rituximab after non-					

gunative DT on niturimah	1			
curative RT or rituximab				
induction in early-stage				
patients	0.025	0.022	Data	(10)
Probability of progression	0.035	0.023	Beta	(18)
after rituximab induction in				
advanced-stage patients	0.104	0.027		(17.10)
Probability of progression	0.104	0.037	Beta	(17,18)
after watchful waiting or				
non-curative RT in				
advanced-stage patients	0.00	0.01.6		(10)
Probability of response to	0.93	0.016	Beta	(19)
bendamustine-rituximab				
after no previous rituximab				
induction				(10)
Probability of response to	0.88	0.020	Beta	(19)
bendamustine-rituximab				
after rituximab induction				
Probability of progression	0.041	0.018	Beta	(19)
after bendamustine-				
rituximab				
Probability of response to	0.85	0.023	Beta	(20)
salvage chemotherapy #1				
Probability of response to	0.65	0.031	Beta	(20)
salvage chemotherapy #2				
Probability of response to	0.45	0.032	Beta	(20)
salvage chemotherapy #3				
Probability of progression	0.165	0.047	Beta	(20)
after salvage chemotherapy				
Probability of death from	0.0040	0.0039	Beta	(19)
bendamustine-rituximab				
Probability of death from	0.0020	0.0020	Beta	(19,21)
rituximab maintenance				
Probability of death from	0.0040	0.0039	Beta	(20)
salvage chemotherapy				
Probability of death in	0.5 for a	-	Fixed	
palliation	maximum o	of		
-	2 cycles			
Probability of death from	Age-related	mortality		(22)
other causes	0	5		
Utilities				
Utility during watchful	0.85	0.020	Beta	(25,26)
waiting	-	-		
Utility during radiation	0.85	0.020	Beta	(25-27)
therapy				()
Utility during rituximab	0.83	0.020	Beta	(25,26)
induction				(
Utility during first	0.88	0.010	Beta	(25,26)
remission after radiation			2014	(20,20)
· ····································	<u>I</u>	1	1	1

therapy or rituximab induction				
Utility during subsequent remissions or rituximab maintenance	0.79	0.030	Beta	(25,26)
Utility during bendamustine-rituximab	0.62	0.030	Beta	(28)
Utility during salvage chemotherapy	0.53	0.05	Beta	(29)
Utility during palliation	0.38	0.05	Beta	(29)
Utility of death	0	-	Fixed	

Abbreviations: RT=radiation therapy; PET/CT= positron emission tomography/computed tomography

Parameter	Mean	Standard	Distribution	References
	(CAD\$)	deviation		
Cost of radiation	9,196	920	Gamma	(30)
therapy				
Cost of PET/CT	1,117	112	Gamma	(31)
Cost of biopsy	250	25	Gamma	(31)
Cost of medical	157	16	Gamma	(32)
oncology				
consultation				
Cost of rituximab	13,517	14	Gamma	(23,33,34,36)
induction				
Cost of follow-up	351	35	Gamma	(32,36)
Cost of	46,929	4693	Gamma	(19,23,32,34,36-
bendamustine-				38)
rituximab after				
rituximab				
induction				
Cost of	47,083	4708	Gamma	(19,23,32,34,36-
bendamustine-				38)
rituximab after				
watchful waiting				
or radiation				
therapy				
Cost of rituximab	10,236	1024	Gamma	(23,32,34,36-
maintenance				38)
Cost of salvage	37,839	3784	Gamma	(33,39)
chemotherapy #1				
Cost of salvage	17,366	1737	Gamma	(39)
chemotherapy #2				
Cost of salvage	17,366	1737	Gamma	(39)
chemotherapy #3				
Cost of palliation	21,918	219	Gamma	(40)

Cost of death	0	-	Gamma		
Abbraviations, DET/CT- positron omission tomography (computed tomography					

Abbreviations: PET/CT= positron emission tomography/computed tomography