MATERIALS AND METHODS

Patients

Patients were deemed unsuitable for ¹⁷⁷Lu-DOTATATE if disease demonstrated low avidity SSR imaging (uptake equal to or less than liver activity), hypoalbuminemia (albumin level ≤ 25 g/L), thrombocytopenia (platelet count < 50 × 109/L at PMCC and < 70 ×109/L at HHUMC), pancytopenia (hemoglobin level < 10 g/dL and white cell count < 3 × 109/L for the Israeli center), Eastern Cooperative Oncology Group (ECOG) performance score of 4, expected survival < 3 months, or confirmed pregnancy.

Ethical Approval

All patients at PMCC were treated on compassionate grounds under the Special Access Scheme (SAS), which allows treatment of patients with life-threatening diseases with experimental therapies that have demonstrated efficacy in other studies. The use of SAS provisions was approved by the institutional ethics committee (Peter Mac Project No: 19/214R) and all patients provided written informed consent to undergo treatment and follow-up. The Israeli Ministry of Health approves PRRT treatment for patients with metastatic progressive NETs and the study was approved by the HHUMC institutional ethical committee (approval number: 0072–16).

Therapy

At PMCC radio-labelling and administration of ¹⁷⁷Lu-DOTATATE was performed under local institutional protocol as previously published(*1*). Radiolabelling of ¹⁷⁷Lu-DOTATATE at HHUMC was also published previously (*2*).

At PMCC, an earlier protocol used infusional fluorouracil (5-FU) as a radiosensitizer (typically 200 mg/m2 daily, starting 2 days before ¹⁷⁷Lu-DOTATATE for 2 weeks in total). With the availability of oral capecitabine, a 5FU prodrug, this substituted 5FU at the dosage of 825 mg/m2 twice daily commencing 2 days before ¹⁷⁷Lu-DOTATATE for 2 weeks. At the discretion of the oncologist following discussion at the multidisciplinary team meeting, if temozolomide was combined with capecitabine, this was administered at 100mg/m² twice daily for 5 days commencing on the day of ¹⁷⁷Lu-DOTATATE for 5 days.

Follow-up

Chromogranin A (CgA) assessment at baseline and follow-up was not included in the manuscript due to the different reference ranges of the two institutions' laboratories and to avoid any possible flaws related to the inter and intra-laboratory variations and also several interfering factors with CgA levels.

¹⁸F-FDG PET/CT response was based on PMCC criteria and grouped : complete response (¹⁸F-FDGavid lesions revert to the background of normal tissues in which they are located), partial response (significant reduction in tumor uptake), stable disease (no visible change in metabolic activity of tumors), progressive disease (increase in intensity or extent of tumor metabolic activity or new sites) (*3,4*).

Supplemental Table	1. Imaging response of all patients	

Patient	⁶⁸ Ga-DOTATATE PET/CT response	¹⁸ F-FDG PET/CT response	RECIST 1.1 response		
1	Partial response	na	Partial response		
2	Partial response	na	Partial response		
3	Partial response	Partial response	Partial response		
4	Partial response	na	Partial response		
5	Partial response	na	Partial response		
6	Stable disease	na	Partial response		
7	Partial response	Partial response	Partial response		
8	Partial response	na	Partial response		
9	Partial response	Partial response	Stable disease		
10	Partial response	na	Stable disease		
11	Partial response	na	Stable disease		
12	Partial response	na	Stable disease		
13	Partial response	na	Stable disease		
14	Partial response	Partial response	Stable disease		
15	Stable disease	na	Stable disease		
16	Partial response	na	Stable disease		
17	Stable disease	na	Stable disease		
18	Stable disease	na	Stable disease		
19	Partial response	na	Stable disease		
20	Stable disease	na	Stable disease		
21	Partial response	Stable disease	Stable disease		
22	Stable disease	na	Stable disease		
23	Stable disease	Stable disease	Stable disease		
24	Stable disease	Partial response	Stable disease		
25	Stable disease	Stable disease	Stable disease		
26	Stable disease	na	Stable disease		
27	Stable disease	na	Stable disease		
28	Stable disease	na	Stable disease		
29	Stable disease	na	Stable disease		
30	Stable disease	na	Stable disease		
31	Partial response	na	Stable disease		
32	na	na	Stable disease		
33	Stable disease	na	Stable disease		
34	Progressive disease	na	Stable disease		
35	Stable disease	na	Stable disease		
36	Progressive disease	na	Progressive disease		
37	Progressive disease	Progressive disease	Progressive disease		
38	Progressive disease	Progressive disease	Progressive disease		

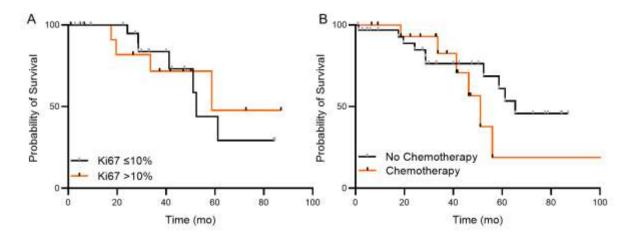
THE JOURNAL OF NUCLEAR MEDICINE • Vol. 63• No. 2 • February 2022 Zidan et al.

39	Stable disease	Progressive disease	Progressive disease		
40	Progressive disease	Progressive disease	Progressive disease		
41	na	na	na		
42	na	na	na		
43	na	na	na		
44	na	na	na		
45	na	na	na		
46	na	na	na		
47	na	na	na		
48	na	na	na		

na: not available

Reference	Study	n (TC: AC)	Therapy	Response Criteria	CR n (%)	PR n (%)	SD n (%)	Progressive disease n (%)	Follow-up (mo)*	PFS mo (95% CI)*	OS mo (95%CI)*
Current study	Retrospective	48 (5:43)	¹⁷⁷ Lu	RECIST	0	8/40 (20)	27/40 (68)	5/40 (12)	42	23 (18-28)	59 (50-NR)
(5)	Prospective	34 (15:19)	¹⁷⁷ Lu	SWOG	1 (3)	4 (12)	16 (47)	13 (38)	29	18 (13-26)	49(26-69)
(6)	Retrospective	22 (5:17)	¹⁷⁷ Lu	RECIST	0	6 (27)	9 (41)	7(32)	54	27 (9-45)	42 (25-59)
(7)	Retrospective	22 (13:8) 1 SCLC	¹⁷⁷ Lu	RECIST	1/19 (5)	1/19 (5)	11/19 (58)	6/19 (32)	NS	NS	40
(8)	Retrospective	48 (15:32) 1 unknown	¹⁷⁷ Lu	Review of notes/radiology reports/correspondence	0	16 (33)	24† (50)	8 (17)	33	NS	43
(9)	Retrospective	114 (34:40) 40 NOS	¹⁷⁷ Lu or ⁹⁰ Y or combined	RECIST	0	15 (13)	61 (54)	38 (33)	45	28	59
(10)	Retrospective	23 [‡]	¹⁷⁷ Lu	RECIST	0	7 (30)	7 (30)	6 (26)	64	20	52 (49-55)
(11)	Retrospective	9 (4:5)	¹⁷⁷ Lu	SWOG	0	5 (56)	3† (33)	1 (11)	20	31	NS
(12)	Prospective	13	¹⁷⁷ Lu or ⁹⁰ Y or combined	Functional response on PET/CT	0	8 (62)	3 (23)	2 (15)	NS	NS	NS
(13)	Prospective	5	¹⁷⁷ Lu	RECIST	0	2 (40)	3† (60)	0	29	NS	NS
(14)	Retrospective	6	¹⁷⁷ Lu or ⁹⁰ Y or combined	RECIST	0	1 (17)	3 (50)	2 (33)	17	NS	NS
(15)	Prospective	6	¹⁷⁷ Lu	RECIST	0	1 (17)	5 (83)	0	31	NS	NS

Supplemental Table 2. Summary of the studies of PRRT in lung neuroendocrine neoplasia (carcinoid)


*Figures have been rounded off

† minor response is grouped as stable disease

‡ Including 3 not evaluable patients

AC: atypical carcinoid; CI: confidence interval; CR: complete response; ¹⁷⁷Lu: ¹⁷⁷Lu-DOTATATE; n: number of patients; NR: Not reached; NS: not stated; NOS: Not otherwise specified; OS: overall survival; Progressive disease: progressive disease; PR: partial response; RECIST: response evaluation criteria for solid tumors; SCLC: small cell lung carcinoma; TC: typical carcinoid; SWOG: Southwest Oncology Group; ⁹⁰Y: ⁹⁰Y-DOTATATE

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 63• No. 2 • February 2022 Zidan et al.

Supplemental Figure 1. Kaplan Meier plot of atypical carcinoid showing no significant difference in OS of the patients with Ki67≤10% compared to those with Ki67>10% (A). No significant difference in OS of the patients treatment with concurrent chemosensitizing chemotherapy and those without chemotherapy (B).

REFERENCES

1. Kong G, Johnston V, Ramdave S, Lau E, Rischin D, Hicks RJ. High-administered activity In-111 octreotide therapy with concomitant radiosensitizing 5FU chemotherapy for treatment of neuroendocrine tumors: preliminary experience. *Cancer Biother Radiopharm.* 2009;24:527-533.

2. Kong G, Grozinsky-Glasberg S, Hofman MS, et al. Efficacy of Peptide Receptor Radionuclide Therapy for Functional Metastatic Paraganglioma and Pheochromocytoma. *J Clin Endocrinol Metab.* 2017;102:3278-3287.

3. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. *J Nucl Med.* 2009;50 Suppl 1:122S-150S.

4. Hicks RJ. The role of PET in monitoring therapy. *Cancer Imaging.* 2005;5:51-57.

5. Ianniello A, Sansovini M, Severi S, et al. Peptide receptor radionuclide therapy with (177)Lu-DOTATATE in advanced bronchial carcinoids: prognostic role of thyroid transcription factor 1 and (18)F-FDG PET. *Eur J Nucl Med Mol Imaging.* 2016;43:1040-1046.

6. Sabet A, Haug AR, Eiden C, et al. Efficacy of peptide receptor radionuclide therapy with (177)Luotreotate in metastatic pulmonary neuroendocrine tumors: a dual-centre analysis. *Am J Nucl Med Mol Imaging.* 2017;7:74-83.

7. Parghane RV, Talole S, Prabhash K, Basu S. Clinical response profile of metastatic/advanced pulmonary neuroendocrine tumors to peptide receptor radionuclide therapy with 177Lu-DOTATATE. *Clin Nucl Med.* 2017;42:428-435.

8. Lim LE, Chan DL, Thomas D, et al. Australian experience of peptide receptor radionuclide therapy in lung neuroendocrine tumours. *Oncotarget.* 2020;11:2636-2646.

9. Mariniello A, Bodei L, Tinelli C, et al. Long-term results of PRRT in advanced bronchopulmonary carcinoid. *Eur J Nucl Med Mol Imaging*. 2016;43:441-452.

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 63• No. 2 • February 2022 Zidan et al.

10. Brabander T, van der Zwan WA, Teunissen JJM, et al. Long-term efficacy, survival, and safety of [(177)Lu-DOTA(0),Tyr(3)]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors. *Clin Cancer Res.* 2017;23:4617-4624.

11. van Essen M, Krenning EP, Bakker WH, de Herder WW, van Aken MO, Kwekkeboom DJ. Peptide receptor radionuclide therapy with 177Lu-octreotate in patients with foregut carcinoid tumours of bronchial, gastric and thymic origin. *Eur J Nucl Med Mol Imaging*. 2007;34:1219-1227.

12. Filice A, Fraternali A, Frasoldati A, et al. Radiolabeled somatostatin analogues therapy in advanced neuroendocrine tumors: a single centre experience. *J Oncol.* 2012;2012:320198.

13. Bodei L, Cremonesi M, Grana CM, et al. Peptide receptor radionuclide therapy with (1)(7)(7)Lu-DOTATATE: the IEO phase I-II study. *Eur J Nucl Med Mol Imaging*. 2011;38:2125-2135.

14. Pfeifer AK, Gregersen T, Gronbaek H, et al. Peptide receptor radionuclide therapy with Y-DOTATOC and (177)Lu-DOTATOC in advanced neuroendocrine tumors: results from a Danish cohort treated in Switzerland. *Neuroendocrinology*. 2011;93:189-196.

15. Garske-Roman U, Sandstrom M, Fross Baron K, et al. Prospective observational study of (177)Lu-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity. *Eur J Nucl Med Mol Imaging.* 2018;45:970-988.