



Supplemental Fig. 1 Profiling of ¹¹C-methionine sellar uptake in a middle-aged man with Cushing Disease. **A-C** Preoperative coronal T1 (**A**), coronal T2 (**B**) and axial T2 (**C**) SE MRI do not reliably identify a pituitary adenoma; note the central position of the infundibulum, with slight gland asymmetry (right>left). **D, E** FSPGR MRI demonstrates similar appearances with no clear lesion visualised. **F-H** Met-PET/MR^{CR} shows predominantly central tracer uptake, but with minor asymmetry relative to the infundibulum (right>left), which is confirmed on the SUVr profile (**H**). **I** In contrast, bilateral IPSS, demonstrates a pituitary source, but with apparent left-sided dominance. However, at TSS a small microadenoma was resected from the right side of the gland, with subsequent complete clinical and biochemical remission. *Key: FSPGR, fast spoiled gradient recalled echo; Gad, gadolinium; IPSS, inferior petrosal sinus sampling; L, left; Met-PET/MR^{CR, 11}C-methionine PET/CT coregistered with FSPGR MRI; P, peripheral; R, right; SE, spin echo; SUVr, Standardised uptake value ratio (relative to cerebellum). TSS, transsphenoidal surgery.*

Supplemental Fig. 2 Confirmation of the site of a microprolactinoma in a young woman with dopamine agonist intolerance. A-D Coronal and sagittal SE MRI pre-and post-gadolinium demonstrates equivocal appearances, with a possible abnormal area posteriorly (yellow arrow) (**D**). **E-G** Coronal, sagittal and axial FSPGR MRI identifies a poorly enhancing lesion posteriorly on the right (yellow arrows). **H-J** Met-PET/MR^{CR} shows intense focal tracer uptake at this site, confirming the location of the microprolactinoma. *Key: FSPGR, fast spoiled gradient recalled echo; Gad, gadolinium; Met-PET/MR^{CR}, ¹¹C-methionine PET/CT coregistered with FSPGR MRI; SE, spin echo.*

Supplemental Fig. 3 Confirmation of the site of a thyrotropinoma in a young woman with secondary hyperthyroidism. A-D Coronal and sagittal SE MRI pre-and post-gadolinium demonstrates equivocal appearances, with a possible abnormal area anteriorly/inferiorly (yellow arrows). E-G Coronal, sagittal and axial FSPGR MRI also raises the possibility of a poorly enhancing lesion in this area (yellow arrows). H-J Met-PET/MR^{CR} shows intense focal tracer uptake at this site, confirming the location of the microthyrotropinoma. *Key:* FSPGR, fast spoiled gradient recalled echo; Gad, gadolinium; Met-PET/MR^{CR}, ¹¹C-methionine PET/CT coregistered with FSPGR MRI; SE, spin echo.

Supplemental Table 1: Key findings in studies targeting somatostatin receptor expression for pituitary imaging

Ligand	Studies*	Tumour subtypes (number of subjects)	Key findings
¹²³ I-Tyr3- octreotide	Faglia et al, 1991(<i>1</i>)	GH (3), NFPA (8), PRL (3)	3/3 GH-secreting PA, 2/8 NFPA and 0/3 macroprolactinoma demonstrated tracer uptake
	Ur et al, 1992(2)	GH (15)	Positive correlation between tracer uptake and biochemical response in 8/15 subjects with acromegaly who also underwent an acute GH suppression test with octreotide
	de Bruin et al, 1992(<i>3</i>)	NFPA (7)	6/7 NFPA demonstrated uptake; correlated with tumoral SSTR expression; but no correlation with tumour shrinkage in response to octreotide therapy
	Scheidhauer et al, 1993(4)	Different CNS tumors (45)	Tracer uptake demonstrated in 50% of PAs (independent of endocrine status)
	Boni et al, 1995(<i>5</i>)	GH (13), NFPA (12), TSH (3)	Positive scans more commonly observed with GH- (12/13) and TSH- (2/3) secreting pituitary PA, and less frequently in NFPA (2/12)
	Maini et al, 1995(<i>6</i>)	GH (7), NFPA (8), PRL (5)	Variable uptake across CNS tumour subtypes: modest in pituitary adenomas; intense in meningiomas
	Tumiati et al, 1995(<i>7</i>)	na (21)	Uptake predominantly in GH-secreting macroadenomas
	Colao et al, 1996(<i>8</i>)	GH (23)	Positive correlation between degree of tracer uptake and reduction of GH and IGF 1 levels in patients with acromegaly treated with short-acting octreotide
	Luyken et al, 1996(<i>9</i>)	na (18)	Tracer uptake observed in 50% of PA (regardless of endocrine secretory state)
	van Royen et al, 1996(10)	NFPA (2), PRL (1), TSH (2), ACTH (1)	Tracer uptake more accurately determined using a fixed ROI (without background correction)
	Borson-Chazot et al, 1997(<i>11</i>)	GH (19), NFPA (29)	In patients with acromegaly (n=19), positive SSTR scintigraphy predicted biochemical response to octreotide therapy (but with low negative predictive value); in patients with NFPA (n=29), negative SSTR scintigraphy correlated with an absence of visual improvement during octreotide therapy.
	Losa et al, 1997(<i>12</i>)	TSH (5)	Tracer uptake observed in a small cohort of TSH-secreting PA, with a trend for the degree of uptake to correlate with extent of TSH suppression in response to an octreotide test dose
¹¹¹ In- pentetreotide	Plockinger et al, 1997(<i>13</i>)	GH (25), NFPA (24)	Poor correlation between tracer uptake and tumour volume in both GH-secreting PA and NFPA; no correlation with biochemical status; unable to identify postoperative tumour remnants not already visible on MRI
pentetreotide	Rieger et al, 1997(<i>14</i>)	GH (11), NFPA (25), PRL (6)	Tracer uptake not predictive of biochemical or structural responses to octreotide therapy in different subtypes of PA
	Legovini at al, 1997(<i>15</i>)	GH (12)	Tracer uptake not predictive of response to octreotide therapy in acromegaly
	Gorges et al, 1997(<i>16</i>)	GH (22)	Poor ability to discriminate between normal pituitary gland and GH-secreting PA
	Lauriero et al, 1998(<i>17</i>)	GH (10), NFPA (1), PRL (10)	Detection of PA remnants enhanced when MRI is combined with ¹¹¹ In- pentetreotide SPECT
	Oppizzi et al, 1998(<i>18</i>)	GH (17), NFPA (22)	Variable tracer uptake in GH-secreting and non-functioning PA
	Schmidt et al, 1998(<i>19</i>)	GH (8), NFPA (14), PRL (2)	Positive scans in 9 of 24 (37.5%) PA (2/8 GH-secreting; 6/14 NFPA; 1/2 prolactinomas)
	Duet et al, 1999(<i>20</i>)	GH (11), NFPA (17), TSH (4)	Tracer uptake not predictive of response to octreotide therapy across PA subtypes
	Colao et al, 1999(<i>21</i>)	GH (24), GH/PRL (4), NFPA (9)	Tracer uptake not predictive of response to octreotide therapy in acromegaly, mixed GH/PRL-secreting PA or NFPA
	Nielsen et al, 2001(22)	GH (7), NFPA (11), PRL (2), ACTH (1)	Tracer uptake not significantly different between GH-secreting and NFPA
	Socin et al, 2003(23)	TSH (7)	Positive scan in 3 of 7 TSH-secreting PA
	Acosta-Gomez et al, 2005(24)	GH (7), NFPA (10), PRL (6), ACTH (8), FSH (2), LH (1)	Able to differentiate scar tissue from recurrent PA post-operatively (sensitivity = 79%) when combined with MRI
	de Herder et al, 2005(25)	GH (10)	No correlation between tracer uptake and GH response to octreotide in 10 patient with acromegaly
99mTc P829	Chiewvit et al, 1999(<i>26</i>)	na (11)	Tracer uptake demonstrated in in 3 of 8 PA
99mTc- HYNIC-TOC	Vukomanovic et al, 2019(27)	GH (3), NFPA (20), PRL (8), ACTH (2)	Sella uptake demonstrated in 30 of 33 patients (3 negative NFPAs in a population of 8 macroadenomas and 25 microadenomas); however, tracer uptake also observed in 8 of 37 control subjects without PA.
⁶⁸ Ga DOTATATE	Zhao et al, 2014(<i>28</i>)	GH (14), GH/PRL (1), NFPA (10), ACTH (9)	Higher ⁶⁸ Ga-DOTATATE uptake observed in normal pituitary tissue; ¹⁸ F-FDG uptake greater in recurrent/remnant PA
	Wang et al, 2018(29)	GH (3), TSH (1), ACTH (33)	Combination of ¹⁸ F-FDG PET and ⁶⁸ Ga-DOTATATE PET aids differentiation of microadenomas from normal pituitary tissue
⁶⁸ Ga DOTATOC	Tjornstrand et al, 2019(<i>30</i>)	NFPA (9)	Lower tracer uptake in clinically non-functioning PA (7 SF-1 and 2 T-Pit staining tumours) when compared with normal pituitary gland.

Key: CNS, central nervous system; DOTATATE, DOTA-Tyr3-octreotate; DOTATOC, DOTA-Tyr3-octreotide; FDG, fluorodeoxyglucose; Ga, gallium; GH, growth hormone; HYNIC-TOC, hydrazinonicotinyl-Tyr3-octreotide; MRI, magnetic resonance imaging; na, not available; NFPA, non-functioning pituitary adenoma; P829, peptide 829 (a low molecular weight SSTR ligand); PA, pituitary adenoma; PET, positron emission tomography; ROI, region of interest; SF-1, steroidogenic factor 1; SPECT, single photon emission computed tomography; SSTR, somatostatin receptor(s); T-Pit, corticotroph lineage transcription factor; Tc, technetium; TSH, thyroid stimulating hormone (thyrotropin).

THE JOURNAL OF NUCLEAR MEDICINE • Vol. 62• No. 7 (Suppl 2) • July 2021 Bashariet al.

Supplemental Table 2: Key findings in studies targeting dopamine receptor expression for pituitary imaging

Ligand	Studies	Tumour subtypes (number of subjects)	Key findings	
¹¹ C-N- methylspiperone	Muhr et al, 1986(31)	na (26)	Good correlation between degree of tracer uptake and biochemical and radiological responses to bromocriptine in prolactinomas; in contrast, minimal tracer uptake in NFPAs in keeping with limited response to bromocriptine therapy.	
11C real oprida	Muhr et al, 1986(31)	na (26)		
¹¹ C-raclopride	Muhr et al, 2006(32)	na (165)	Tracer uptake in prolactinomas and D2R-expressing GH-secreting tumours predicted response to dopamine agonist therapy	
¹⁸ F-FESP	Lucignani et al, 1997(<i>33</i>)	NFPA (8)	Tracer uptake 2-3-fold higher in NFPAs compared with meningioma and craniopharyngioma.	
	Pirker et al, 1994(<i>34</i>)	GH (2), NFPA (4), PRL (8), ACTH (1)	Low sensitivity for visualisation of prolactinomas and GH-secreting PA	
¹²³ I-iodobenzamide	de Herder et al, 1996(<i>35</i>)	GH (12), NFPA (17), MacroPRL (5), MicroPRL (2) TSH (1)	Variable positivity in macroprolactinomas; negative scans in microprolactinomas (n=2), TSH-secreting PA (n=1) and GH-secreting PA (n=12)	
	Ferone et al, 1998(<i>36</i>)	GH (4), NFPA (6), PRL (4)	Positive correlation between SPECT uptake and biochemical and structural responses to quinagolide and cabergoline in prolactinomas and NFPAs	
	Colao et al, 2000(<i>37</i>)	NFPA (10), PRL (10)		
	Pirker et al, 1996(<i>38</i>)	GH (4), NFPA (4), PRL (9), ACTH (2)	Tracer uptake (using SPECT) demonstrated in prolactinoma (8/9), NFPA (4/4) and GH-secreting PA (2/4); no uptake shown in ACTH- secreting PA (2/2)	
¹²³ I-epidepride	de Herder et al, 1999(<i>39</i>)	NFPA (15), PRL (4)	SPECT uptake using ¹²³ I-epidepride superior to ¹²³ I-iodobenzamide in dopamine receptor-positive adenomas; uptake seen in 60% of NFPA cases (9/15).	
	de Herder et al, 2006(<i>40</i>)	na (85)	Limited clinical utility in predicting clinical efficacy of DA therapy in selected patients with NFPAs	

Key: ACTH, adrenocorticotropic hormone; D2R, dopamine receptor subtype 2; FESP, fluoroethylspiperone; GH, growth hormone; NFPA, non-functioning pituitary adenoma. SRS, somatostatin receptor scintigraphy; MRI, magnetic resonance imaging; na, not available; PA, pituitary adenoma; PET, positron emission tomography; SPECT, single photon emission computed tomography.

*Only studies reporting ≥5 subjects are shown

Supplemental Table 3: Key findings in studies using ¹⁸F-FDG for the detection of pituitary adenomas

Ligand	Studies*	Tumour subtypes (number of subjects)	Key findings
¹⁸ F-FDG	Francavilla et al, 1991(<i>41</i>)	na (24)	Highest tracer uptake in NFPAs compared with other PAs (with TSH- secreting PA exhibiting lowest uptake); findings in recurrent macroadenomas comparable to non-operated cases; lower tracer uptake observed in previously irradiated PA
	Alzahrani et al, 2009(<i>4</i> 2)	ACTH (12)	Tracer uptake in 7 of 12 ACTH-secreting PA (7 <i>de novo</i> and 5 postsurgical cases); in 4 patients with 'negative' MRI scans, ¹⁸ F-FDG PET positive in one case; in 5 patients with 'negative' PET scans, MRI positive in 2 subjects
	lkeda et al, 2010(<i>43</i>)	ACTH (12)	¹⁸ F-FDG PET less sensitive (8/12) than ¹¹ C-methionine PET (11/11) for the detection of ACTH-secreting PA
	Seok et al, 2013(<i>44</i>)	GH (5), NFPA (14), PRL (2), ACTH (2), TSH (1)	Tracer uptake observed in all 14 macroadenomas (8 NFPA, 3 GH-secreting, 1 Prolactin-secreting, 1 ACTH-secreting, 1 TSH-secreting) and 5 of 10 microadenomas (3/6 NFPA, 1/2 GH-secreting, 1/1 Prolactin-secreting, 0/1 ACTH-secreting); positive scan in only 1 of 7 Rathke's cleft cysts
	Zhao et al, 2014(28)	GH (14), GH/PRL (1), NFPA (10), ACTH (9)	¹⁸ F-FDG PET, in combination with ⁶⁸ Ga DOTATATE PET, permitted improved distinction between residual/recurrent PA and normal pituitary gland
	Chittiboina et al, 2015(<i>45</i>)	ACTH (10)	¹⁸ F-FDG PET more sensitive than SE MRI, but less sensitive than FSPGR MRI, for detection of microadenomas in <i>de novo</i> Cushing Disease
	Feng et al, 2016(<i>46</i>)	GH (16), PRL (12), ACTH (15)	Comparison of ¹⁸ F-FDG PET (n=43) and ¹¹ C-methionine PET (n=39) in surgically-confirmed PA (16 acromegaly, 15 Cushing's Disease, 12 prolactinomas); ¹⁸ F-FDG PET positive in 29 of 43 patients; ¹¹ C-methionine PET positive in 37 of 39 cases (2 false positive scans); 12 patients positive on ¹¹ C-methionine PET but with negative ¹⁸ F-FDG PET; in 9 patients with a recurrent microadenoma, ¹¹ C-methionine PET positive in all instances, but ¹⁸ F-FDG PET ¹⁸ F-FDG PET positive in only 2 cases
	Tosaka et al, 2017(<i>47</i>)	GH (8), NFPA (14)	Higher tracer uptake in NFPA ($n=14$) than GH-secreting PA ($n=8$).
	Wang et al, 2018(<i>48</i>)	GH (3), ACTH (33), TSH (1)	Combination of ¹⁸ F-FDG PET and ⁶⁸ Ga-DOTATATE PET aids differentiation of microadenomas from normal pituitary tissue
	Boyle et al, 2019(<i>49</i>)	ACTH (27)	Ability of ¹⁸ F-FDG PET to detect ACTH-secreting PA enhanced by CRH stimulation

Key: ACTH, adrenocorticotropic hormone; CD, Cushing Disease; CRH, corticotropin releasing hormone; DOTATATE, DOTA-Tyr3-octreotate; FDG, fluorodeoxyglucose; Ga, gallium; GH, growth hormone; MRI, magnetic resonance imaging; na, not available; PA, pituitary adenoma; PET, positron emission tomography; NFPA, non-functioning pituitary adenoma; SE, spin echo; SPGR, spoiled gradient recalled.

REFERENCES

- Faglia G, Bazzoni N, Spada A, et al. In vivo detection of somatostatin receptors in patients with functionless pituitary adenomas by means of a radioiodinated analog of somatostatin ([123I]SDZ 204-090). J Clin Endocrinol Metab. 1991;73:850-6.
- 2. Ur E, Mather SJ, Bomanji J, et al. Pituitary imaging using a labelled somatostatin analogue in acromegaly. *Clin Endocrinol (Oxf)*. 1992;36:147-150.
- de Bruin TW, Kwekkeboom DJ, Van't Verlaat JW, et al. Clinically nonfunctioning pituitary adenoma and octreotide response to long term high dose treatment, and studies in vitro. *J Clin Endocrinol Metab.* 1992;75:1310-1317.
- Scheidhauer K, Hildebrandt G, Luyken C, Schomäcker K, Klug N, Schicha H. Somatostatin receptor scintigraphy in brain tumors and pituitary tumors: first experiences. *Horm Metab Res Suppl*. 1993;27:59-62.
- Boni G1, Ferdeghini M, Bellina CR, Matteucci F, Castro Lopez E, Parenti G, Canapicchi R BR.
 [111In-DTPA-D-Phe]-octreotide scintigraphy in functioning and non-functioning pituitary adenomas. PubMed NCBI. 1995.
- Maini CL, Sciuto R, Tofani A, et al. Somatostatin receptor imaging in CNS tumours using 111Inoctreotide. *Nucl Med Commun*. 1995;16:756-766.
- 7. Tumiati MN, Facchi E, Gatti C, Bossi A, Longari V. Scintigraphic assessment of pituitary adenomas and several diseases by indium-111-pentetreotide. *Q J Nucl Med.* 1995;39:98-100.
- 8. Colao A, Ferone D, Lastoria S, et al. Prediction of efficacy of octreotide therapy in patients with acromegaly. *J Clin Endocrinol Metab.* 1996;81:2356-2362.
- Luyken C, Hildebrandt G, Krisch B, Scheidhauer K, Klug N. Clinical Relevance of Somatostatin Receptor Scintigraphy in Patients with Skull Base Tumours. In: Modern Neurosurgery of Meningiomas and Pituitary Adenomas. Vol 1996. Vienna: Springer Vienna; 1996:102-104.
- 10. van Royen EA, Verhoeff NP, Meylaerts SA, Miedema AR. Indium-111-DTPA-octreotide uptake measured in normal and abnormal pituitary glands. *J Nucl Med.* 1996;37:1449-1451.

- Borson-Chazot F, Houzard C, Ajzenberg C, et al. Somatostatin receptor imaging in somatotroph and non-functioning pituitary adenomas: correlation with hormonal and visual responses to octreotide. *Clin Endocrinol (Oxf)*. 1997;47:589-598.
- 12. Losa M, Magnani P, Mortini P, et al. Indium-111 pentetreotide single-photon emission tomography in patients with TSH-secreting pituitary adenomas: Correlation with the effect of a single administration of octreotide on serum TSH levels. *Eur J Nucl Med.* 1997;24:728-731.
- 13. Plöckinger U, Bäder M, Hopfenmüller W, Saeger W, Quabbe HJ. Results of somatostatin receptor scintigraphy do not predict pituitary tumor volume- and hormone-response to ocreotide therapy and do not correlate with tumor histology. *Eur J Endocrinol.* 1997;136:369-376.
- 14. Rieger A, Rainov NG, Elfrich C, et al. Somatostatin receptor scintigraphy in patients with pituitary adenoma. *Neurosurg Rev.* 1997;20:7-12.
- Legovini P, De Menis E, Billeci D, Conti B, Zoli P, Conte N. 111Indium-pentetreotide pituitary scintigraphy and hormonal responses to octreotide in acromegalic patients. *J Endocrinol Invest*. 20:424-428.
- Görges R, Cordes U, Engelbach M, et al. [Prediction of pharmacological effect of octreotide in acromegaly by means of 111In-pentetreotide scintigraphy and calculation of a pituitary uptake index]. *Nuklearmedizin*. 1997;36:117-124.
- Lauriero F, Pierangeli E, Rubini G, Resta M, D'Addabbo A. Pituitary adenomas: the role of 111In-DTPA-octreotide SPET in the detection of minimal post-surgical residues. *Nucl Med Commun.* 1998;19:1127-1134.
- 18. Oppizzi G, Cozzi R, Dallabonzana D, et al. Scintigraphic imaging of pituitary adenomas: an in vivo evaluation of somatostatin receptors. *J Endocrinol Invest*. 1998;21:512-519.
- Schmidt M, Scheidhauer K, Luyken C, et al. Somatostatin receptor imaging in intracranial tumours.
 Eur J Nucl Med. 1998;25:675-686.
- 20. Duet M, Ajzenberg C, Benelhadj S, et al. Somatostatin receptor scintigraphy in pituitary adenomas: a somatostatin receptor density index can predict hormonal and tumoral efficacy of octreotide in vivo. *J*

Nucl Med. 1999;40:1252-1256.

- 21. Colao A, Lastoria S, Ferone D, et al. The pituitary uptake of (111)In-DTPA-D-Phe1-octreotide in the normal pituitary and in pituitary adenomas. *J Endocrinol Invest*. 1999;22:176-183.
- 22. Nielsen S, Mellemkjær S, Rasmussen LM, et al. Expression of somatostatin receptors on human pituitary adenomas in vivo and ex vivo. *J Endocrinol Invest*. 2001;24:430-437.
- 23. Socin H, Chanson P, Delemer B, et al. The changing spectrum of TSH-secreting pituitary adenomas: diagnosis and management in 43 patients. *Eur J Endocrinol.* 2003;148:433-442.
- Acosta-Gómez MJ, Muros MA, Llamas-Elvira JM, et al. The role of somatostatin receptor scintigraphy in patients with pituitary adenoma or post-surgical recurrent tumours. *Br J Radiol*. 2005;78:110-115.
- 25. de Herder WW, Lamberts SWJ. Somatostatin analogs as radiodiagnostic tools. *Rev Endocr Metab Disord*. 2005;6:23-7.
- 26. Chiewvit S, Chiewvit P, Pusuwan P, Sriussadaporn S, Ratanamart V. Somatostatin receptor tumor imaging (Tc 99m P829) in pituitary adenoma. *J Med Assoc Thai*. 1999;82:1208-13.
- Vukomanovic VR, Matovic M, Doknic M, et al. Clinical usefulness of 99mTc-HYNIC-TOC, 99mTc(V) DMSA, and 99mTc-MIBI SPECT in the evaluation of pituitary adenomas. *Nucl Med Commun.* 2019;40:41-51.
- 28. Zhao X, Xiao J, Xing B, Wang R, Zhu Z, Li F. Comparison of (68)Ga DOTATATE to 18F-FDG uptake is useful in the differentiation of residual or recurrent pituitary adenoma from the remaining pituitary tissue after transsphenoidal adenomectomy. *Clin Nucl Med*. 2014;39:605-8.
- 29. Wang H, Hou B, Lu L, et al. PET/MRI in the Diagnosis of Hormone-Producing Pituitary Microadenoma: A Prospective Pilot Study. *J Nucl Med*. 2018;59:523-528.
- 30. Tjörnstrand A, Casar-Borota O, Heurling K, et al. Lower 68 Ga-DOTATOC uptake in nonfunctioning pituitary neuroendocrine tumours compared to normal pituitary gland-A proof-of-concept study. *Clin Endocrinol (Oxf)*. December 2019.

visualization with 11C-N-methylspiperone. J Comput Assist Tomogr. 1986;10:175-80.

- 32. Muhr C. Positron Emission Tomography in Acromegaly and Other Pituitary Adenoma Patients. *Neuroendocrinology*. 2006;83:205-210.
- 33. Lucignani G, Losa M, Moresco RM, et al. Differentiation of clinically non-functioning pituitary adenomas from meningiomas and craniopharyngiomas by positron emission tomography with [18F]fluoro-ethyl-spiperone. *Eur J Nucl Med.* 1997;24:1149-1155.
- 34. Pirker W, Brücke T, Riedl M, et al. Iodine-123-{IBZM}-{SPECT}: studies in 15 patients with pituitary tumors. *J Neural Transm Sect JNT*. 1994;97:235-244.
- 35. de Herder WW, Reijs AE, Kwekkeboom DJ, et al. In vivo imaging of pituitary tumours using a radiolabelled dopamine D2 receptor radioligand. *Clin Endocrinol (Oxf)*. 1996;45:755-67.
- Ferone D, Lastoria S, Colao A, et al. Correlation of Scintigraphic Results Using ¹²³I-Methoxybenzamide with Hormone Levels and Tumor Size Response to Quinagolide in Patients with Pituitary Adenomas. *J Clin Endocrinol Metab.* 1998;83:248-252.
- Colao A, Ferone D, Lastoria S, et al. Hormone levels and tumour size response to quinagolide and cabergoline in patients with prolactin-secreting and clinically non-functioning pituitary adenomas: predictive value of pituitary scintigraphy with 123I-methoxybenzamide. *Clin Endocrinol (Oxf)*. 2000;52:437-445.
- 38. Pirker W, Riedl M, Luger A, et al. Dopamine D2 receptor imaging in pituitary adenomas using iodine-123-epidepride and SPECT. *J Nucl Med.* 1996;37:1931-7.
- de Herder WW, Reijs AE, de Swart J, et al. Comparison of iodine-123 epidepride and iodine-123
 IBZM for dopamine D2 receptor imaging in clinically non-functioning pituitary macroadenomas and macroprolactinomas. *Eur J Nucl Med.* 1999;26:46-50.
- 40. de Herder WW, Reijs AEM, Feelders RA, et al. Dopamine agonist therapy of clinically nonfunctioning pituitary macroadenomas. Is there a role for 123I-epidepride dopamine D2 receptor imaging? *Eur J Endocrinol.* 2006;155:717-723.
- 41.Francavilla TL, Miletich RS, DeMichele D, et al. Positron emission tomography of pituitaryTHE JOURNAL OF NUCLEAR MEDICINE Vol. 62• No. 7 (Suppl 2) July 2021Bashariet al.

macroadenomas. Neurosurgery. 1991;28:826.

- 42. Alzahrani AS, Farhat R, Al-Arifi A, Al-Kahtani N, Kanaan I, Abouzied M. The diagnostic value of fused positron emission tomography/computed tomography in the localization of adrenocorticotropin-secreting pituitary adenoma in Cushing's disease. *Pituitary*. 2009;12:309-314.
- Ikeda H, Abe T, Watanabe K. Usefulness of composite methionine–positron emission tomography/3.0-tesla magnetic resonance imaging to detect the localization and extent of earlystage Cushing adenoma. *J Neurosurg*. 2010;112:750-755.
- 44. Seok H, Lee EJY, Choe EY, et al. Analysis of 18F-fluorodeoxyglucose positron emission tomography findings in patients with pituitary lesions. *Korean J Intern Med.* 2013;28:81-88.
- 45. Chittiboina P, Montgomery BK, Millo C, Herscovitch P, Lonser RR. High-resolution18Ffluorodeoxyglucose positron emission tomography and magnetic resonance imaging for pituitary adenoma detection in {Cushing} disease. *J Neurosurg*. 2015;122:791-797.
- 46. Feng Z, He D, Mao Z, et al. Utility of 11C-Methionine and 18F-FDG PET/CT in Patients With Functioning Pituitary Adenomas. *Clin Nucl Med.* 2016;41:e130-e134.
- Tosaka M, Higuchi T, Horiguchi K, et al. Preoperative Evaluation of Sellar and Parasellar Macrolesions by [18 F]Fluorodeoxyglucose Positron Emission Tomography. *World Neurosurg*. 2017;103:591-599.
- 48. Wang H, Hou B, Lu L, et al. PET/MRI in the Diagnosis of Hormone-Producing Pituitary Microadenoma: A Prospective Pilot Study. *J Nucl Med*. 2018;59:523-528.
- 49. Boyle J, Patronas NJ, Smirniotopoulos J, et al. CRH stimulation improves 18F-FDG-PET detection of pituitary adenomas in Cushing's disease. *Endocrine*. 2019;65:155-165.