

SUPPLEMENTAL FIGURE 1 Voxel-wise and patient-wise correlations between rCBV and ADC. A) The voxelwise Pearson's correlation coefficients demonstrate that only $\mathrm{IDH}_{\mathrm{m} \text {-non-codel }}$ shows a significant negative correlation between rCBV and ADC. Bars denote the mean values and $95 \%$ confidential interval. * and $* *$ mean $P<0.05$ and < 0.01 , respectively. B) $\mathrm{IDH}_{\mathrm{wt}}$ with all grades and $\mathrm{IDH}_{\mathrm{m} \text {-non-codel }}$ exhibit significant negative correlations between median rCBV and ADC.


SUPPLEMENTAL FIGURE 2 Receiver operating characteristic curves to differentiate between $\operatorname{IDH}_{w t}$ and $\operatorname{IDH}_{m}$ gliomas.


SUPPLEMENTAL FIGURE 3 Kaplan-Meier to differentiate OS of IDH $_{w t}$ gliomas with $r_{\text {voxel-wise }}$ A) between nSUV and $\mathrm{rCBV}, \mathrm{B}$ ) between nSUV and ADC , and C ) between rCBV and ADC. Gliomas are stratified by the median value of $r_{\text {voxel-wise }}$.


SUPPLEMENTAL FIGURE 4 Voxel-wise Pearson's coefficient between FDOPA uptake, rCBV, and ADC in different MGMT methylation or EGFR amplification status. A) The $r_{\text {voxel-wise }}$ between FDOPA uptake and rCBV has a positive correlation in MGMT unmethylated $(0.23,95 \% \mathrm{CI}[0.14,0.31])$ and methylated gliomas $(0.26,95 \% \mathrm{CI}$ [0.17, 0.36]). B) The $r_{\text {voxel-wise }}$ between FDOPA uptake and ADC has a negative correlation in MGMT unmethylated $(-0.12,95 \% \mathrm{CI}[-0.25,0.01])$ and methylated gliomas $(-0.15,95 \% \mathrm{CI}[-0.23,-0.06])$. C) The $r_{\text {voxel-wise }}$ between
rCBV and ADC has no significant correlation in MGMT unmethylated ( $-0.08,95 \% \mathrm{CI}[-0.19,0.03]$ ) nor methylated gliomas $(-0.03,95 \%$ CI $[-0.13,-0.07])$. D) The $r_{\text {voxel-wise }}$ between FDOPA uptake and rCBV has a positive correlation in EGFR negative ( $0.24,95 \% \mathrm{CI}[0.17,0.32]$ ) and positive gliomas $(0.25,95 \% \mathrm{CI}[0.16,0.34])$. E) The $r_{\text {voxel-wise }}$ between FDOPA uptake and ADC has a negative correlation in EGFR negative $(-0.13,95 \%$ CI $[-0.21,-0.04])$ and positive gliomas ( $-0.26,95 \%$ CI $[-0.38,-0.15]$ ). F) The $r_{\text {voxel-wise }}$ between rCBV and ADC has no significant correlation in EGFR negative ( $-0.06,95 \%$ CI $[-0.15,0.03]$ ) nor positive gliomas $(0.002,95 \%$ CI $[-0.11,0.11]$ ). Bars denote the mean values and $95 \%$ confidential interval. No pair-wise comparisons between the different molecular status show significant differences.


SUPPLEMENTAL FIGURE 5 Patient-wise Pearson's correlation coefficients between median nSUV, median rCBV, and ADC in different MGMT methylation or EGFR amplification status. A) In MGMT unmethylated gliomas, there is a significant positive correlation between the FDOPA uptake and rCBV, and a weak negative (not significant) correlation between the FDOPA uptake and ADC. B) In MGMT methylated gliomas, there is a significant positive correlation between the FDOPA uptake and rCBV, and a significant negative correlation between the FDOPA uptake and ADC. The patient-wise correlation of nSUV and rCBV is significantly stronger in MGMT unmethylated gliomas than in methylated gliomas. C) Both MGMT unmethylated and methylated gliomas demonstrate significant negative correlations between median rCBV and $\mathrm{ADC} . \mathrm{D})$ In EGFR positive gliomas, there is a significant positive correlation between FDOPA uptake and rCBV, and a negative correlation between FDOPA uptake and ADC. E) In EGFR positive gliomas, there is a significant positive correlation between FDOPA uptake and rCBV and a negative correlation (not significant) between FDOPA uptake and ADC. F) Both EGFR negative and positive gliomas demonstrate significant negative correlations between median rCBV and ADC. There are no significant differences in the correlation strength between FDOPA uptake, rCBV, and ADC with different EGFR statuses.

| ID | Sex | Age | WHO grade | $\begin{gathered} \text { IDH } \\ \text { mutation } \\ \text { status } \end{gathered}$ | $1 \mathrm{p} / 19 \mathrm{q}$ codeletion status | MGMT <br> methylation status | EGFR amplification status | Surgical procedure | Date between PET scan and censored date (days) | Final status |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Male | 64 | IV | Wild-type | - | Methylated | Positive | GTR | 1776 | Deceased |
| 2 | Female | 76 | IV | Wild-type | - | Methylated | Negative | STR | 167 | Deceased |
| 3 | Female | 66 | IV | Wild-type | - | Methylated | Negative | STR | 719 | Alive |
| 4 | Female | 47 | IV | Wild-type | - | Methylated | Negative | STR | 1685 | Deceased |
| 5 | Male | 54 | IV | Wild-type | - | Methylated | - | STR | 37 | LFU |
| 6 | Male | 74 | IV | Wild-type | - | Methylated | - | Biopsy | 50 | Deceased |
| 7 | Male | 36 | IV | Wild-type | - | Unmethylated | Positive | STR | 404 | Deceased |
| 8 | Female | 55 | IV | Wild-type | - | Unmethylated | Positive | STR | 847 | LFU |
| 9 | Male | 74 | IV | Wild-type | - | Unmethylated | Negative | GTR | 41 | LFU |
| 10 | Female | 26 | IV | Wild-type | - | Unmethylated | Negative | Biopsy | 734 | Deceased |
| 11 | Male | 77 | IV | Wild-type | - | Unmethylated | Negative | STR | 735 | Deceased |
| 12 | Male | 56 | IV | Wild-type | - | Unmethylated | Negative | STR | 245 | LFU |
| 13 | Female | 63 | IV | Wild-type | - | Unmethylated | Negative | STR | 406 | Deceased |
| 14 | Male | 76 | IV | Wild-type | - | - | Positive | Biopsy | 82 | Deceased |
| 15 | Female | 68 | III | Wild-type | - | Methylated | Positive | GTR | 1594 | Alive |
| 16 | Female | 60 | III | Wild-type | - | Methylated | Positive | STR | 796 | Deceased |
| 17 | Male | 59 | III | Wild-type | - | Methylated | Negative | STR | 1096 | LFU |
| 18 | Female | 61 | III | Wild-type | - | Methylated | - | STR | 1361 | LFU |
| 19 | Male | 48 | III | Wild-type | - | Unmethylated | Positive | STR | 474 | Alive |
| 20 | Female | 59 | III | Wild-type | - | Unmethylated | Positive | STR | 722 | Deceased |
| 21 | Male | 58 | III | Wild-type | - | Unmethylated | Positive | STR | 875 | Deceased |
| 22 | Male | 53 | III | Wild-type | - | Unmethylated | Negative | STR | 399 | LFU |
| 23 | Male | 62 | III | Wild-type | - | Unmethylated | Negative | STR | 226 | LFU |
| 24 | Male | 64 | III | Wild-type | - | Unmethylated | Negative | STR | 145 | Alive |
| 25 | Female | 60 | III | Wild-type | - | Unmethylated | Negative | Biopsy | 391 | Deceased |
| 26 | Male | 60 | III | Wild-type | - | Unmethylated | - | STR | 806 | Deceased |
| 27 | Female | 63 | III | Wild-type | - | - | Positive | Biopsy | 488 | LFU |
| 28 | Male | 68 | III | Wild-type | - | - | Negative | STR | 38 | Deceased |
| 29 | Male | 63 | III | Wild-type | - | - | Negative | STR | 65 | LFU |
| 30 | Male | 63 | II | Wild-type | - | Methylated | Positive | STR | 642 | LFU |
| 31 | Male | 61 | II | Wild-type | - | Unmethylated | Negative | STR | 1441 | Deceased |
| 32 | Male | 64 | II | Wild-type | - | Unmethylated | Negative | STR | 187 | Alive |
| 33 | Male | 69 | II | Wild-type | - | Unmethylated | Negative | STR | 263 | Alive |
| 34 | Female | 54 | II | Wild-type | - | - | Negative | Biopsy | 57 | LFU |
| 35 | Male | 50 | II | Wild-type | - | - | - | STR | 763 | LFU |
| 36 | Female | 63 | II | Wild-type | - | - | - | Biopsy | 2291 | Deceased |
| 37 | Male | 38 | III | Mutant | non-Codeleted | Methylated | Negative | Biopsy | 1149 | LFU |
| 38 | Female | 47 | III | Mutant | non-Codeleted | Methylated | Negative | STR | 656 | Alive |
| 39 | Male | 35 | III | Mutant | non-Codeleted | Methylated | Negative | STR | 502 | Alive |
| 40 | Male | 55 | III | Mutant | non-Codeleted | Methylated | Negative | Biopsy | 357 | LFU |
| 41 | Female | 41 | III | Mutant | non-Codeleted | Methylated |  | STR | 118 | LFU |
| 42 | Female | 25 | III | Mutant | non-Codeleted | Unmethylated | Negative | Biopsy | 1530 | LFU |
| 43 | Male | 36 | II | Mutant | non-Codeleted | Methylated | Negative | GTR | 1921 | LFU |
| 44 | Male | 34 | II | Mutant | non-Codeleted | Methylated | Negative | STR | 1336 | LFU |
| 45 | Male | 79 | II | Mutant | non-Codeleted | Methylated | Negative | STR | 159 | Alive |
| 46 | Male | 57 | II | Mutant | non-Codeleted | Methylated | Negative | STR | 747 | Alive |
| 47 | Female | 27 | II | Mutant | non-Codeleted | Methylated | - | GTR | 1423 | LFU |
| 48 | Female | 36 | II | Mutant | non-Codeleted | Unmethylated | Negative | STR | 1110 | Alive |
| 49 | Male | 39 | II | Mutant | non-Codeleted | Unmethylated | Negative | Biopsy | 347 | LFU |
| 50 | Female | 25 | II | Mutant | non-Codeleted | Unmethylated | - | STR | 1790 | Alive |
| 51 | Male | 22 | II | Mutant | non-Codeleted | U | Negative | STR | 1099 | LFU |
| 52 | Male | 39 | II | Mutant | non-Codeleted | - | Negative | STR | 712 | Alive |
| 53 | Male | 67 | III | Mutant | Codeleted | Methylated | Negative | STR | 1110 | LFU |
| 54 | Male | 53 | III | Mutant | Codeleted | Unmethylated | Negative | STR | 321 | LFU |
| 55 | Female | 35 | III | Mutant | Codeleted | Unmethylated | - | GTR | 4291 | LFU |
| 56 | Male | 33 | III | Mutant | Codeleted | - | - | STR | 3958 | LFU |
| 57 | Female | 48 | II | Mutant | Codeleted | Methylated | Negative | GTR | 1713 | Alive |
| 58 | Male | 43 | II | Mutant | Codeleted | Methylated | Negative | STR | 29 | Deceased |
| 59 | Female | 47 | II | Mutant | Codeleted | Methylated | - | GTR | 2779 | Alive |
| 60 | Female | 48 | II | Mutant | Codeleted | Methylated | - | Biopsy | 222 | LFU |
| 61 | Male | 36 | II | Mutant | Codeleted | Methylated | - | STR | 3263 | Alive |
| 62 | Female | 28 | II | Mutant | Codeleted | Unmethylated | - | GTR | 1232 | LFU |
| 63 | Male | 61 | II | Mutant | Codeleted | Unmethylated | - | GTR | 166 | Alive |
| 64 | Female | 25 | II | Mutant | Codeleted | Unmethylated | - | GTR | 166 | Alive |
| 65 | Male | 37 | II | Mutant | Codeleted | - | Negative | STR | 362 | Alive |

Tatekawa et al.

| 66 | Male | 56 | II | Mutant | Codeleted | - | Negative | GTR | 740 | Alive |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :--- | :---: | :---: |
| 67 | Male | 39 | II | Mutant | Codeleted | - | - | STR | 3590 | LFU |
| 68 | Male | 52 | II | Mutant | Codeleted | - | - | STR | 1637 | LFU |

STR = subtotal resection; GTR = gross total resection; LFU = lost to follow-up

SUPPLEMENTAL TABLE 2 A linear mixed effect model between FDOPA uptake and rCBV or ADC with different molecular status

| Tumor type |  | Wild-type ( $\mathrm{n}=36$ ) |  | $P$ value | $\begin{gathered} \text { Mutant } 1 \mathrm{p} / 19 \mathrm{q} \text { non- } \\ \text { codel }(\mathrm{n}=16) \end{gathered}$ |  | $P$ value | $\begin{aligned} & \text { Mutant } 1 \mathrm{p} / 19 \mathrm{q} \text { codel } \\ & (\mathrm{n}=16) \end{aligned}$ |  | $P$ value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Voxel-wise mixed effect model between nSUV and rCBV | $\beta_{0}$ | 0.99 | [1.23, 1.25] |  | -0.21 | [-0.38, -0.05] |  | 1.08 | [0.90, 1.26] |  |
|  | $\beta_{1}$ | 1.24 | [1.23, 1.25] | $<0.001$ | 2.52 | [2.51, 2.53] | $<0.001$ | 0.76 | [0.74, 0.77] | < 0.001 |
|  | $\mathrm{b}_{\mathrm{om}}$ | 0.69 | [0.54, 0.88] |  | 0.34 | [0.24, 0.48] |  | 0.33 | [0.22, 0.48] |  |
|  | $\varepsilon_{\text {im }}$ | 1.48 | [1.47, 1.47] |  | 1.04 | [1.04, 1.04] |  | 1.24 | [1.24, 1.24] |  |
| Voxel-wise mixed effect model between nSUV and ADC | $\beta_{0}$ | 1169 | [1128, 1211] |  | 1669 | [1606, 1730] |  | 1023 | [969, 1076] |  |
|  | $\beta_{1}$ | -157 | [-159, -155] | $<0.001$ | -649 | [-651, -646] | $<0.001$ | 187 | [184, 190] | $<0.001$ |
|  | $\mathrm{b}_{\text {om }}$ | 121 | [95, 153] |  | 127 | [90, 178] |  | 101 | [ 69,146$]$ |  |
|  | $\varepsilon_{\text {im }}$ | 250 | [249, 250] |  | 258 | [258, 258] |  | 249 | [248, 249] |  |

Data were estimate with $95 \%$ confidence interval; Parameters fit for a linear mixed-effect model for voxel-wise analysis of nSUV and rCBV/ADC (see Eq. 1); nSUV = normalized standardized uptake value; rCBV = relative cerebral blood volume; $\mathrm{ADC}=$ apparent diffusion coefficient

SUPPLEMENTAL TABLE 3 Parameters of FDOPA PET and MRI in different MGMT or EGFR status

| Tumor type | MGMT unmethylated$(\mathrm{n}=27)$ |  | MGMT methylated ( $\mathrm{n}=27$ ) |  | $P$ value | EGFR negative$(\mathrm{n}=36)$ |  | EGFR positive$(\mathrm{n}=16)$ |  | $P$ value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Maximum nSUV | $\begin{gathered} 1.46 \pm \\ 0.67 \end{gathered}$ | [1.20, 1.72] | $\begin{gathered} 1.62 \pm \\ 0.91 \end{gathered}$ | [1.26, 1.98] | 0.89 | $\begin{gathered} 1.55 \pm \\ 0.83 \end{gathered}$ | [1.28, 1.82] | $\begin{gathered} 1.61 \pm \\ 0.68 \end{gathered}$ | [1.15, 2.06] | 0.50 |
| Median nSUV | $\begin{gathered} 0.70 \pm \\ 0.16 \end{gathered}$ | [0.64, 0.76] | $\begin{gathered} 0.82 \pm \\ 0.30 \end{gathered}$ | [0.70, 0.94] | 0.15 | $\begin{gathered} 0.75 \pm \\ 0.27 \end{gathered}$ | [0.66, 0.84] | $\begin{gathered} 0.76 \pm \\ 0.18 \end{gathered}$ | [0.64, 0.88] | 0.49 |
| Median rCBV | $\begin{gathered} 1.40 \pm \\ 0.55 \end{gathered}$ | [1.17, 1.63] | $\begin{gathered} 1.57 \pm \\ 0.77 \end{gathered}$ | [1.25, 1.89] | 0.41 | $\begin{gathered} 1.34 \pm \\ 0.44 \end{gathered}$ | [1.19, 1.49] | $\begin{gathered} 2.15 \pm \\ 0.99 \end{gathered}$ | [1.48, 2.82] | 0.001* |
| Median ADC <br> $\left(\times 10^{-6} \mathrm{~mm}^{2} / \mathrm{s}\right)$ | $\begin{array}{r} 1122 \\ \pm 194 \\ \hline \end{array}$ | [1042, 1202] | $\begin{gathered} 1105 \\ \pm 182 \end{gathered}$ | $\begin{gathered} {[1031,} \\ 1179] \end{gathered}$ | 0.75 | $\begin{gathered} 1104 \\ \pm 198 \end{gathered}$ | [1036, 1172] | $\begin{gathered} 1018 \\ \pm 128 \end{gathered}$ | [931, 1104] | 0.17 |

Data were mean $\pm$ standard deviation with $95 \%$ confidence interval; * means statistically significant; MGMT = O6-methylguanine-DNA methyltransferase; EGFR = epidermal growth factor receptor; nSUV = normalized standardized uptake value; $\mathrm{rCBV}=$ relative cerebral blood volume; $\mathrm{ADC}=$ apparent diffusion coefficient

SUPPLEMENTAL TABLE 4 A linear mixed effect model between SUV uptake and rCBV or ADC with different MGMT or EGFR status

|  | MGMT unmethylated <br> $(\mathrm{n}=27)$ |  |  | $P$ value | MGMT methylated <br> $(\mathrm{n}=27)$ | $P$ value | EGFR negative <br> $(\mathrm{n}=36)$ | $P$ value | EGFR positive <br> $(\mathrm{n}=16)$ | $P$ value |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Data were estimate with $95 \%$ confidence interval; Parameter fit for linear mixed-effects model for voxel-wise analysis of nSUV and rCBV/ADC (see Eq. 1); MGMT = O6-methylguanine-DNA methyltransferase; EGFR = epidermal growth factor receptor; nSUV = normalized standardized uptake value; $\mathrm{rCBV}=$ relative cerebral blood volume; $\mathrm{ADC}=$ apparent diffusion coefficient

