PT - JOURNAL ARTICLE AU - James Russell AU - Milan Grkovski AU - Isabella J. O’Donoghue AU - Teja M. Kalidindi AU - Nagavarakishore Pillarsetty AU - Eva M. Burnazi AU - Amanda Kulick AU - Amber Bahr AU - Qing Chang AU - H. Carl LeKaye AU - Elisa de Stanchina AU - Kenneth H. Yu AU - John L. Humm TI - Predicting Gemcitabine Delivery by <sup>18</sup>F-FAC PET in Murine Models of Pancreatic Cancer AID - 10.2967/jnumed.120.246926 DP - 2021 Feb 01 TA - Journal of Nuclear Medicine PG - 195--200 VI - 62 IP - 2 4099 - http://jnm.snmjournals.org/content/62/2/195.short 4100 - http://jnm.snmjournals.org/content/62/2/195.full SO - J Nucl Med2021 Feb 01; 62 AB - 18F-FAC (2′-deoxy-2′-18F-fluoro-β-d-arabinofuranosylcytosine) has close structural similarity to gemcitabine and thus offers the potential to image drug delivery to tumors. We compared tumor 18F-FAC PET images with 14C-gemcitabine levels, established ex vivo, in 3 mouse models of pancreatic cancer. We further modified tumor gemcitabine levels with injectable PEGylated recombinant human hyaluronidase (PEGPH20) to test whether changes in gemcitabine would be tracked by 18F-FAC. Methods: 18F-FAC was synthesized as described previously. Three patient-derived xenograft (PDX) models were grown in the flanks of NSG mice. Mice were given PEGPH20 or vehicle intravenously 24 h before coinjection of 18F-FAC and 14C-gemcitabine. Animals were euthanized and imaged 1 h after tracer administration. Tumor and muscle uptake of both 18F-FAC and 14C-gemcitabine was obtained ex vivo. The efficacy of PEPGPH20 was validated through staining with hyaluronic acid binding protein. Additionally, an organoid culture, initiated from a KPC (Pdx-1 Cre LSL-KrasG12D LSL-p53R172H) tumor, was used to generate orthotopically growing tumors in C57BL/6J mice, and these tumors were then serially transplanted. Animals were injected with PEGPH20 and 14C-gemcitabine as described above to validate increased drug uptake by ex vivo assay. PET/MR images were obtained using a PET insert on a 7-T MR scanner. Animals were imaged immediately before injection with PEGPH20 and again 24 h later. Results: Tumor-to-muscle ratios of 14C-gemcitabine and 18F-FAC correlated well across all PDX models and treatments (R2 = 0.78). There was a significant increase in the tumor PET signal in PEGPH20-treated PDX animals, and this signal was matched in ex vivo counts for 2 of 3 models. In KPC-derived tumors, PEGPH20 raised 14C-gemcitabine levels (tumor-to-muscle ratio of 1.9 vs. 2.4, control vs. treated, P = 0.013). PET/MR 18F-FAC images showed a 12% increase in tumor 18F-FAC uptake after PEGPH20 treatment (P = 0.023). PEGPH20-treated animals uniformly displayed clear reductions in hyaluronic acid staining. Conclusion: 18F-FAC PET was shown to be a good surrogate for gemcitabine uptake and, when combined with MR, to successfully determine drug uptake in tumors growing in the pancreas. PEGPH20 had moderate effects on tumor uptake of gemcitabine.