RT Journal Article SR Electronic T1 Improved Alignment of PET and CT Images in Whole-Body PET/CT in Cases of Respiratory Motion During CT JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 1376 OP 1380 DO 10.2967/jnumed.119.235804 VO 61 IS 9 A1 James J. Hamill A1 Joseph G. Meier A1 Sonia L. Betancourt Cuellar A1 Bradley Sabloff A1 Jeremy J. Erasmus A1 Osama Mawlawi YR 2020 UL http://jnm.snmjournals.org/content/61/9/1376.abstract AB Respiratory motion during the CT and PET parts of a PET/CT scan leads to imperfect alignment of anatomic features seen by the 2 modalities. In this work, we concentrate on the effects of motion during CT. We propose a novel approach for improving the alignment. Methods: Respiratory waveform data were gathered during the CT and PET parts of 28 PET/CT scans of cancer patients with 40 lesions up to 3 cm in size in the lung or upper abdomen. PET list-mode data were reconstructed by 3 reconstruction methods: PET/static (the standard method with no motion correction); PET/ex (a method that calculates a range of expiratory amplitudes from the lowest one to the highest one); and PET/matched (a novel method that uses both waveforms). The 3 methods were compared. The distance between tumor positions in PET and CT were characterized in visual interpretation by physicians as well as quantitatively. Tumor SUVs (SUVmax and SUVpeak) were determined relative to SUV based on the static method. Image noise was evaluated in the liver and compared with PET/static. Results: In visual interpretation, the rate of good alignment was 13 of 21, 13 of 23, and 18 of 21 for the PET/static, PET/ex, and PET/matched methods, respectively, and the mean PET/CT distances were 3.5, 5.1, and 2.8 mm. In visual comparison with PET/ex, the rate of good alignment was increased in 1 of 10 and 7 of 10 cases for PET/static and PET/matched, respectively. SUVmax was on average 21% higher than PET/static when either PET/ex or PET/matched was used. SUVpeak was 12% higher. Image noise in the liver was 15% higher than PET/static for the PET/ex method, and 40% higher for PET/matched; that is, noise was much lower than in gated PET. Conclusion: Acquiring respiratory waveforms both in PET (as in the current state of the art) and in CT (an unusual key step in this approach) has the potential to improve the alignment of PET and CT images. A proposed method for using this information was tested. Improved alignment was demonstrated.