RT Journal Article SR Electronic T1 Attenuation Correction Methods Suitable for Brain Imaging with a PET/MRI Scanner: A Comparison of Tissue Atlas and Template Attenuation Map Approaches JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 1142 OP 1149 DO 10.2967/jnumed.110.085076 VO 52 IS 7 A1 Ian B. Malone A1 Richard E. Ansorge A1 Guy B. Williams A1 Peter J. Nestor A1 T. Adrian Carpenter A1 Tim D. Fryer YR 2011 UL http://jnm.snmjournals.org/content/52/7/1142.abstract AB Modeled attenuation correction (AC) will be necessary for combined PET/MRI scanners not equipped with transmission scanning hardware. We compared 2 modeled AC approaches that use nonrigid registration with rotating 68Ge rod–based measured AC for 10 subjects scanned with 18F-FDG. Methods: Two MRI and attenuation map pairs were evaluated: tissue atlas–based and measured templates. The tissue atlas approach used a composite of the BrainWeb and Zubal digital phantoms, whereas the measured templates were produced by averaging spatially normalized measured MR image and coregistered attenuation maps. The composite digital phantom was manually edited to include 2 additional tissue classes (paranasal sinuses, and ethmoidal air cells or nasal cavity). In addition, 3 attenuation values for bone were compared. The MRI and attenuation map pairs were used to generate subject-specific attenuation maps via nonrigid registration of the MRI to the MR image of the subject. SPM2 and a B-spline free-form deformation algorithm were used for the nonrigid registration. To determine the accuracy of the modeled AC approaches, radioactivity concentration was assessed on a voxelwise and regional basis. Results: The template approach produced better spatial consistency than the phantom-based atlas, with an average percentage error in radioactivity concentration across the regions, compared with measured AC, of −1.2% ± 1.2% and −1.5% ± 1.9% for B-spline and SPM2 registration, respectively. In comparison, the tissue atlas method with B-spline registration produced average percentage errors of 0.0% ± 3.0%, 0.9% ± 2.9%, and 2.9% ± 2.8% for bone attenuation values of 0.143 cm−1, 0.152 cm−1, and 0.172 cm−1, respectively. The largest errors for the template AC method were found in parts of the frontal cortex (−3%) and the cerebellar vermis (−5%). Intersubject variability was higher with SPM2 than with B-spline. Compared with measured AC, template AC with B-spline and SPM2 achieved a correlation coefficient (R2) of 0.99 and 0.98, respectively, for regional radioactivity concentration. The corresponding R2 for the tissue atlas approach with B-spline registration was 0.98, irrespective of the bone attenuation coefficient. Conclusion: Nonrigid registration of joint MRI and attenuation map templates can produce accurate AC for brain PET scans, particularly with measured templates and B-spline registration. Consequently, these methods are suitable for AC of brain scans acquired on combined PET/MRI systems.