%0 Journal Article %A Wenting Zhang %A Wei Fan %A Brendan M. Ottemann %A Sameer Alshehri %A Jered C. Garrison %T Development of Improved Tumor-Residualizing, GRPR-Targeted Agents: Preclinical Comparison of an Endolysosomal Trapping Approach in Agonistic and Antagonistic Constructs %D 2020 %R 10.2967/jnumed.119.231282 %J Journal of Nuclear Medicine %P 443-450 %V 61 %N 3 %X Receptor-targeted radiopharmaceuticals based on low-molecular-weight carriers offer many clinically advantageous attributes relative to macromolecules but have generally been hampered by their rapid clearance from tumors, thus diminishing tumor-to-nontarget tissue ratios. Herein, we present a strategy using irreversible inhibitors (E-64 derivative) of cysteine cathepsins (CCs) as trapping agents to increase the tumor retention of receptor-targeted agents. Methods: We incorporated these CC-trapping agents into agonistic and antagonistic pharmacophores targeting the gastrin-releasing peptide receptor (GRPR). The synthesized radioconjugates with either an incorporated CC inhibitor or a matching control were examined using in vitro and in vivo models of the GRPR-positive, PC-3 human prostate cancer cell line. Results: From the in vitro studies, multiple techniques confirmed that the CC-trapping, GRPR-targeted constructs were able to increase cellular retention by forming intracellular macromolecule adducts. In PC-3 tumor–bearing xenograft mice, the CC-trapping, GRPR-targeted agonistic and antagonistic constructs led to an approximately 2-fold increase in tumor retention with a corresponding improvement in most tumor-to-nontarget tissue ratios over 72 h. Conclusion: CC endolysosomal trapping provides a pathway to increase the efficacy and clinical potential of low-molecular-weight, receptor-targeted agents. %U https://jnm.snmjournals.org/content/jnumed/61/3/443.full.pdf