RT Journal Article SR Electronic T1 Multimodal 18F-AV-1451 and MRI Findings in Nonfluent Variant of Primary Progressive Aphasia: Possible Insights on Nodal Propagation of Tau Protein Across the Syntactic Network JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 263 OP 269 DO 10.2967/jnumed.118.225508 VO 61 IS 2 A1 Belen Pascual A1 Quentin Funk A1 Paolo Zanotti-Fregonara A1 Neha Pal A1 Elijah Rockers A1 Meixiang Yu A1 Bryan Spann A1 Gustavo C. Román A1 Paul E. Schulz A1 Christof Karmonik A1 Stanley H. Appel A1 Joseph C. Masdeu YR 2020 UL http://jnm.snmjournals.org/content/61/2/263.abstract AB Although abnormally folded tau protein has been found to self-propagate from neuron to connected neuron, similar propagation through human brain networks has not been fully documented. We studied tau propagation in the left hemispheric syntactic network, which comprises an anterior frontal node and a posterior temporal node connected by the white matter of the left arcuate fasciculus. This network is affected in the nonfluent variant of primary progressive aphasia, a neurodegenerative disorder with tau accumulation. Methods: Eight patients with the nonfluent variant of primary progressive aphasia (age, 67.0 ± 7.4 y; 4 women) and 8 healthy controls (age, 69.6 ± 7.0 y; 4 women) were scanned with 18F-AV-1451 tau PET to determine tau deposition in the brain and with MRI to determine the fractional anisotropy of the arcuate fasciculus. Normal syntactic network characteristics were confirmed with structural MRI diffusion imaging in our healthy controls and with blood oxygenation level–dependent functional imaging in 35 healthy participants from the Alzheimer Disease Neuroimaging Initiative database. Results: Language scores in patients indicated dysfunction of the anterior node. 18F-AV-1451 deposition was greatest in the 2 nodes of the syntactic network. The left arcuate fasciculus had decreased fractional anisotropy, particularly near the anterior node. Normal MRI structural connectivity from an area similar to the one containing tau in the anterior frontal node projected to an area similar to the one containing tau in the patients in the posterior temporal node. Conclusion: Tau accumulation likely started in the more affected anterior node and, at the disease stage at which we studied these patients, appeared as well in the brain region (in the temporal lobe) spatially separate from but most connected with it. The arcuate fasciculus, connecting both of them, was most severely affected anteriorly, as would correspond to a loss of axons from the anterior node. These findings are suggestive of tau propagation from node to connected node in a natural human brain network and support the idea that neurons that wire together die together.