RT Journal Article SR Electronic T1 Patient-Specific Computational Model and Dosimetry Calculations for PET/CT of a Patient Pregnant with Twins JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 1451 OP 1458 DO 10.2967/jnumed.117.205286 VO 59 IS 9 A1 Tianwu Xie A1 Paolo Zanotti-Fregonara A1 Agathe Edet-Sanson A1 Habib Zaidi YR 2018 UL http://jnm.snmjournals.org/content/59/9/1451.abstract AB The radiation dose delivered to pregnant patients during radiologic imaging procedures raises health concerns because the developing embryo and fetus are considered to be highly radiosensitive. To appropriately weigh the diagnostic benefits against the radiation risks, the radiologist needs reasonably accurate and detailed estimates of the fetal dose. Expanding our previously developed series of computational phantoms for pregnant women, we here describe a personalized model for twin pregnancy, based on an actual clinical scan. Methods: The model is based on a standardized hybrid pregnant female and fetus phantom and on a clinical case of a patient who underwent an 18F-FDG PET/CT scan while expecting twins at 25 weeks’ gestation. This model enabled us to produce a realistic physical representation of the pregnant patient and to estimate the maternal and fetal organ doses from the 18F-FDG and CT components. The Monte Carlo N-Particle Extended general-purpose code was used for radiation transport simulation. Results: The 18F-FDG doses for the 2 fetuses were 3.78 and 3.99 mGy, and the CT doses were 0.76 and 0.70 mGy, respectively. Therefore, the relative contribution of 18F-FDG and CT to the total dose to the fetuses was about 84% and 16%, respectively. Meanwhile, for 18F-FDG, the calculated personalized absorbed dose was about 40%–50% higher than the doses reported by other dosimetry computer software tools. Conclusion: Our approach to constructing personalized computational models allows estimation of a patient-specific radiation dose, even in cases with unusual anatomic features such as a twin pregnancy. Our results also show that, even in twins, the fetal organ doses from both 18F-FDG and CT present a certain variability linked to the anatomic characteristics. The CT fetal dose is smaller than the 18F-FDG PET dose.