PT - JOURNAL ARTICLE AU - Marilyne Kafrouni AU - Carole Allimant AU - Marjolaine Fourcade AU - Sébastien Vauclin AU - Julien Delicque AU - Alina-Diana Ilonca AU - Boris Guiu AU - Federico Manna AU - Nicolas Molinari AU - Denis Mariano-Goulart AU - Fayçal Ben Bouallègue TI - Retrospective Voxel-Based Dosimetry for Assessing the Ability of the Body-Surface-Area Model to Predict Delivered Dose and Radioembolization Outcome AID - 10.2967/jnumed.117.202937 DP - 2018 Aug 01 TA - Journal of Nuclear Medicine PG - 1289--1295 VI - 59 IP - 8 4099 - http://jnm.snmjournals.org/content/59/8/1289.short 4100 - http://jnm.snmjournals.org/content/59/8/1289.full SO - J Nucl Med2018 Aug 01; 59 AB - The aim of this study was to quantitatively evaluate the ability of the body-surface-area (BSA) model to predict tumor-absorbed dose and treatment outcome through retrospective voxel-based dosimetry. Methods: Data from 35 hepatocellular carcinoma patients with a total of 42 90Y-resin microsphere radioembolization treatments were included. Injected activity was planned with the BSA model. Voxel dosimetry based on 99mTc-labeled macroaggregated albumin SPECT and 90Y-microsphere PET was retrospectively performed using a dedicated treatment planning system. Average dose and dose–volume histograms (DVHs) of the anatomically defined tumors were analyzed. The selected dose metrics extracted from DVHs were minimum dose to 50% and 70% of the tumor volume and percentage of the volume receiving at least 120 Gy. Treatment response was evaluated 6 mo after therapy according to the criteria of the European Association for the Study of the Liver. Results: Six-month response was evaluated in 26 treatments: 14 were considered to produce an objective response and 12 a nonresponse. Retrospective evaluation of 90Y-microsphere PET–based dosimetry showed a large interpatient variability with a median average absorbed dose of 60 Gy to the tumor. In 62% (26/42) of the cases, tumor, nontumoral liver, and lung doses would have complied with the recommended thresholds if the injected activity calculated by the BSA method had been increased. Average doses, minimum dose to 50% and 70% of the tumor volume, and percentage of the volume receiving at least 120 Gy were significantly higher in cases of objective response than in nonresponse. Conclusion: In our population, average tumor-absorbed dose and DVH metrics were associated with tumor response. However, the activity calculated by the BSA method could have been increased to reach the recommended tumor dose threshold. Tumor uptake, target and nontarget volumes, and dose distribution heterogeneity should be considered for activity planning.