PT - JOURNAL ARTICLE AU - Joey A. Muns AU - Veronica Montserrat AU - Hendrik-Jan Houthoff AU - Karlijn Codée-van der Schilden AU - Oene Zwaagstra AU - Niels J. Sijbrandi AU - Eugen Merkul AU - Guus A.M.S. van Dongen TI - In Vivo Characterization of Platinum(II)-Based Linker Technology for the Development of Antibody–Drug Conjugates: Taking Advantage of Dual Labeling with <sup>195m</sup>Pt and <sup>89</sup>Zr AID - 10.2967/jnumed.117.206672 DP - 2018 Jul 01 TA - Journal of Nuclear Medicine PG - 1146--1151 VI - 59 IP - 7 4099 - http://jnm.snmjournals.org/content/59/7/1146.short 4100 - http://jnm.snmjournals.org/content/59/7/1146.full SO - J Nucl Med2018 Jul 01; 59 AB - Linker instability and impaired tumor targeting can affect the tolerability and efficacy of antibody–drug conjugates (ADCs). To improve these ADC characteristics, we recently described the use of a metal–organic linker, [ethylenediamineplatinum(II)]2+, herein called Lx. Initial therapy studies in xenograft-bearing mice revealed that trastuzumab-Lx-auristatin F (AF) outperformed its maleimide benchmark trastuzumab-mal-AF and the Food and Drug Administration–approved ado-trastuzumab emtansine, both containing conventional linkers. In this study, we aimed to characterize Lx-based ADCs for in vivo stability and tumor targeting using 195mPt and 89Zr. Methods: The γ-emitter 195mPt was used to produce the radiolabeled Lx [195mPt]Lx. 89Zr-Desferrioxamine (89Zr-DFO) was conjugated to trastuzumab either via [195mPt]Lx (to histidine residues) or conventionally (to lysine residues) in order to monitor the biodistribution of antibody, payload, and linker separately. Linker stability was determined by evaluating the following ADCs for biodistribution in NCI-N87 xenograft–bearing nude mice 72 h after injection: trastuzumab-[195mPt]Lx-DFO-89Zr, trastuzumab-[195mPt]Lx-AF, and 89Zr-DFO-(Lys)trastuzumab (control), all having drug-to-antibody ratios (DARs) of 2.2–2.5. To assess the influence of DAR on biodistribution, 89Zr-DFO-(Lys)trastuzumab-Lx-AF with an AF-to-antibody ratio of 0, 2.6, or 5.2 was evaluated 96 h after injection. Results: Similar biodistributions were observed for trastuzumab-[195mPt]Lx-DFO-89Zr, trastuzumab-[195mPt]Lx-AF, and 89Zr-DFO-(Lys)trastuzumab irrespective of the isotope used for biodistribution assessment. The fact that Lx follows the antibody biodistribution indicates that the payload-Lx bond is stable in vivo. Uptake of the 3 conjugates, as percentage injected dose (%ID) per gram of tissue, was about 30 %ID/g in tumor tissue but less than 10 %ID/g in most healthy tissues. Trastuzumab-[195mPt]Lx-AF (DAR 2.2) showed a tendency toward faster blood clearance and an elevated liver uptake, which increased significantly to 28.1 ± 4.2 %ID/g at a higher DAR of 5.2, as revealed from the biodistribution and PET imaging studies. Conclusion: As shown by 195mPt/89Zr labeling, ADCs containing the Lx linker are stable in vivo. In the case of trastuzumab-Lx-AF (DARs 2.2 and 2.6), an unimpaired biodistribution was demonstrated.