RT Journal Article SR Electronic T1 Validation of 2-18F-Fluorodeoxysorbitol as a Potential Radiopharmaceutical for Imaging Bacterial Infection in the Lung JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 134 OP 139 DO 10.2967/jnumed.117.195420 VO 59 IS 1 A1 Junling Li A1 Huaiyu Zheng A1 Ramy Fodah A1 Jonathan M. Warawa A1 Chin K. Ng YR 2018 UL http://jnm.snmjournals.org/content/59/1/134.abstract AB 2-18F-fluorodeoxysorbitol (18F-FDS) has been shown to be a promising agent with high selectivity and sensitivity in imaging bacterial infection. The objective of our study was to validate 18F-FDS as a potential radiopharmaceutical for imaging bacterial infection longitudinally in the lung. Methods: Albino C57 female mice were intratracheally inoculated with either live or dead Klebsiella pneumoniae to induce either lung infection or lung inflammation. One group of mice was imaged to monitor disease progression. PET/CT was performed on days 0, 1, 2, and 3 after inoculation using either 18F-FDS or 18F-FDG (n = 12 for each tracer). The other group was first screened by bioluminescent imaging (BLI) to select only mice with visible infection (region of interest > 108 ph/s) for PET/CT imaging with 18F-FDS (n = 12). For the inflammation group, 5 mice each were imaged with PET/CT using either 18F-FDS or 18F-FDG from days 1 to 4 after inoculation. Results: For studies of disease progression, BLI showed noticeable lung infection on day 2 after inoculation and significantly greater infection on day 3. Baseline imaging before inoculation showed no focal areas of lung consolidation on CT and low uptake in the lung for both PET radiotracers. On day 2, an area of lung consolidation was identified on CT, with a corresponding 2.5-fold increase over baseline for both PET radiotracers. On day 3, widespread areas of patchy lung consolidation were found on CT, with a drastic increase in uptake for both 18F-FDS and 18F-FDG (9.2 and 3.9). PET and BLI studies showed a marginal correlation between 18F-FDG uptake and colony-forming units (r = 0.63) but a much better correlation for 18F-FDS (r = 0.85). The uptake ratio of infected lung over inflamed lung was 8.5 and 1.7 for 18F-FDS and 18F-FDG on day 3. Conclusion: Uptake of both 18F-FDS and 18F-FDG in infected lung could be used to track the degree of bacterial infection measured by BLI, with a minimum detection limit of 107 bacteria. 18F-FDS, however, is more specific than 18F-FDG in differentiating K. pneumoniae lung infection from lung inflammation.