PT - JOURNAL ARTICLE AU - Muneyuki Sakata AU - Kenji Ishibashi AU - Masamichi Imai AU - Kei Wagatsuma AU - Kenji Ishii AU - Xiaoyun Zhou AU - Erik F.J. de Vries AU - Philip H. Elsinga AU - Kiichi Ishiwata AU - Jun Toyohara TI - Initial Evaluation of an Adenosine A<sub>2A</sub> Receptor Ligand, <sup>11</sup>C-Preladenant, in Healthy Human Subjects AID - 10.2967/jnumed.116.188474 DP - 2017 Sep 01 TA - Journal of Nuclear Medicine PG - 1464--1470 VI - 58 IP - 9 4099 - http://jnm.snmjournals.org/content/58/9/1464.short 4100 - http://jnm.snmjournals.org/content/58/9/1464.full SO - J Nucl Med2017 Sep 01; 58 AB - 11C-preladenant is a selective antagonist for mapping of cerebral adenosine A2A receptors (A2ARs) by PET. This is a first-in-human study to examine the safety, radiation dosimetry, and brain imaging of 11C-preladenant in healthy human subjects. Methods: Dynamic 11C-preladenant PET scans (90 min) were obtained in 5 healthy male subjects. During the scan, arterial blood was sampled at various time intervals, and the fraction of the parent compound in plasma was determined. For anatomic coregistration, T1-weighted MRI was performed. The total distribution volume (VT) was estimated using 1- and 2-tissue-compartment models (1T and 2T, respectively). The distribution volume ratio (DVR) was calculated from VT of target and reference region and obtained with a noninvasive Logan graphical reference tissue method (t* = 30 min). The applicability of a shortened protocol as an alternative to the 90-min PET scan was investigated. Tracer biodistribution and dosimetry were determined in 3 healthy male subjects, using serial whole-body PET scans acquired over 2 h after 11C-preladenant injection. Results: There were no serious adverse events in any of the subjects throughout the study period. 11C-preladenat readily entered the brain, with a peak uptake in the putamen and head of the caudate nucleus 30−40 min after tracer injection. Other brain regions showed rapid clearance of radioactivity. The regional distribution of 11C-preladenant was consistent with known A2AR densities in the brain. At pseudoequilibrium (reached at 40 min after injection), stable target–to–cerebellar cortex ratios of around 3.8−10.0 were obtained. The 2T fit better than the 1T in the low-density A2AR regions. In contrast, there were no significant differences between 1T and 2T in the high-A2AR-density regions. DVRs in the putamen and head of the caudate nucleus were around 3.8−10.3 when estimated using a Logan graphical reference tissue method with cerebellum as the reference region. PET scanning at 50 or 70 min can provide the stable DVR estimates within 10% or 5% differences at most, respectively. The radioactivity was mainly excreted through the hepatobiliary system after 11C-preladenant injection. As a result, the absorbed dose (μGy/MBq) was highest in the gallbladder wall (mean ± SD, 17.0 ± 2.5) and liver (11.7 ± 2.1). The estimated effective dose for 11C-preladenant was 3.7 ± 0.4 μSv/MBq. Conclusion: This initial evaluation indicated that 11C-preladenat is suitable for imaging of A2ARs in the brain.