RT Journal Article SR Electronic T1 PET/MRI for Oncologic Brain Imaging: A Comparison of Standard MR-Based Attenuation Corrections with a Model-Based Approach for the Siemens mMR PET/MR System JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 1519 OP 1525 DO 10.2967/jnumed.116.186148 VO 58 IS 9 A1 Ivo Rausch A1 Lucas Rischka A1 Claes N. Ladefoged A1 Julia Furtner A1 Matthias Fenchel A1 Andreas Hahn A1 Rupert Lanzenberger A1 Marius E. Mayerhoefer A1 Tatjana Traub-Weidinger A1 Thomas Beyer YR 2017 UL http://jnm.snmjournals.org/content/58/9/1519.abstract AB The aim of this study was to compare attenuation-correction (AC) approaches for PET/MRI in clinical neurooncology. Methods: Forty-nine PET/MRI brain scans were included: brain tumor studies using 18F-fluoro-ethyl-tyrosine (18F-FET) (n = 31) and 68Ga-DOTANOC (n = 7) and studies of healthy subjects using 18F-FDG (n = 11). For each subject, MR-based AC maps (MR-AC) were acquired using the standard DIXON- and ultrashort echo time (UTE)–based approaches. A third MR-AC was calculated using a model-based, postprocessing approach to account for bone attenuation values (BD, noncommercial prototype software by Siemens Healthcare). As a reference, AC maps were derived from patient-specific CT images (CTref). PET data were reconstructed using standard settings after AC with all 4 AC methods. We report changes in diagnosis for all brain tumor patients and the following relative differences values (RDs [%]), with regards to AC-CTref: for 18F-FET (A)—SUVs as well as volumes of interest (VOIs) defined by a 70% threshold of all segmented lesions and lesion-to-background ratios; for 68Ga-DOTANOC (B)—SUVs as well as VOIs defined by a 50% threshold for all lesions and the pituitary gland; and for 18F-FDG (C)—RD of SUVs of the whole brain and 10 anatomic regions segmented on MR images. Results: For brain tumor imaging (A and B), the standard PET-based diagnosis was not affected by any of the 3 MR-AC methods. For A, the average RDs of SUVmean were −10%, −4%, and −3% and of the VOIs 1%, 2%, and 7% for DIXON, UTE, and BD, respectively. Lesion-to-background ratios for all MR-AC methods were similar to that of CTref. For B, average RDs of SUVmean were −11%, −11%, and −3% and of the VOIs 1%, −4%, and −3%, respectively. In the case of 18F-FDG PET/MRI (C), RDs for the whole brain were −11%, −8%, and −5% for DIXON, UTE, and BD, respectively. Conclusion: The diagnostic reading of PET/MR patients with brain tumors did not change with the chosen AC method. Quantitative accuracy of SUVs was clinically acceptable for UTE- and BD-AC for group A, whereas for group B BD was in accordance with CTref. Nevertheless, for the quantification of individual lesions large deviations to CTref can be observed independent of the MR-AC method used.