TY - JOUR T1 - How Sensitive Is the Upper Gastrointestinal Tract to <sup>90</sup>Y Radioembolization? A Histologic and Dosimetric Analysis in a Porcine Model JF - Journal of Nuclear Medicine JO - J Nucl Med SP - 1957 LP - 1963 DO - 10.2967/jnumed.116.176768 VL - 57 IS - 12 AU - Alexander S. Pasciak AU - Laurentia Nodit AU - Austin C. Bourgeois AU - Ben E. Paxton AU - Patricia N. Coan AU - Christopher T. Clark AU - M. Katherine Tolbert AU - Joleen K. Adams AU - Aravind Arepally AU - Yong C. Bradley Y1 - 2016/12/01 UR - http://jnm.snmjournals.org/content/57/12/1957.abstract N2 - In 90Y radioembolization, nontarget embolization to the stomach or small bowel can result in gastrointestinal injury, a rare but difficult to manage clinical complication. However, dosimetric thresholds for toxicity to these tissues from radioembolization have never been evaluated in a controlled setting. We performed an analysis of the effect of 90Y radioembolization in a porcine model at different absorbed-dose endpoints. Methods: Six female pigs underwent transfemoral angiography and infusion of 90Y-resin microspheres into arteries supplying part of the gastric wall. Esophagogastroduodenoscopy was performed after 4 wk to assess interim gastrointestinal health. Animals were monitored for side effects for 9 wk after 90Y infusion, after which they were euthanized and their upper gastrointestinal tracts were excised for analysis. Histologic sections were used to map microsphere location, and a microdosimetric evaluation was performed to determine the absorbed-dose profile within the gastrointestinal wall. Results: 90Y radioembolization dosages from 46.3 to 105.1 MBq were infused, resulting in average absorbed doses of between 35.5 and 91.9 Gy to the gastric wall. No animal exhibited any signs of pain or gastrointestinal distress through the duration of the study. Excised tissue showed 1–2 small (&lt;3.0 cm2) healed or healing superficial gastric lesions in 5 of 6 animals. Histologic analysis demonstrated that lesion location was superficial to areas of abnormally high microsphere deposition. An analysis of microsphere deposition patterns within the gastrointestinal wall indicated a high preference for submucosal deposition. Dosimetric evaluation at the luminal mucosa performed on the basis of microscopic microsphere distribution confirmed that 90Y dosimetry techniques conventionally used in hepatic dosimetry provide a first-order estimate of absorbed dose. Conclusion: The upper gastrointestinal tract may be less sensitive to 90Y radioembolization than previously thought. Lack of charged-particle equilibrium at the luminal mucosa may contribute to decreased toxicity of 90Y radioembolization compared with external-beam radiation therapy in gastrointestinal tissue. Clinical examples of injury from 90Y nontarget embolization have likely resulted from relatively large 90Y activities being deposited in small tissue volumes, resulting in absorbed doses in excess of 100 Gy. ER -