TY - JOUR T1 - Ex Vivo and In Vivo Evaluation of Overexpressed VLA-4 in Multiple Myeloma Using LLP2A Imaging Agents JF - Journal of Nuclear Medicine JO - J Nucl Med SP - 640 LP - 645 DO - 10.2967/jnumed.115.164624 VL - 57 IS - 4 AU - Deepti Soodgupta AU - Haiying Zhou AU - Wissam Beaino AU - Lan Lu AU - Michael Rettig AU - Mark Snee AU - James Skeath AU - John F. DiPersio AU - Walter J. Akers AU - Richard Laforest AU - Carolyn J. Anderson AU - Michael H. Tomasson AU - Monica Shokeen Y1 - 2016/04/01 UR - http://jnm.snmjournals.org/content/57/4/640.abstract N2 - Very-late-antigen-4 (VLA-4, α4β1 integrin, CD49d/CD29) is a transmembrane adhesion receptor that plays an important role in cancer and immune responses. Enhanced VLA-4 expression has been observed in multiple myeloma (MM) cells and surrounding stroma. VLA-4 conformational activation has been associated with MM pathogenesis. VLA-4 is a promising MM imaging and therapeutic biomarker. Methods: Specificity of 64Cu-LLP2A (64Cu-CB-TE1A1P-PEG4-LLP2A), a high-affinity VLA-4 peptidomimetic–based radiopharmaceutical, was evaluated in α4 knock-out mice and by competitive blocking in wild-type tumor-bearing mice. 64Cu-LLP2A PET/CT (static and dynamic) imaging was conducted in C57BL6/KaLwRij mice bearing murine 5TGM1-GFP syngeneic tumors generated after intravenous injection via the tail. Blood samples were collected for serum protein electrophoresis. Bone marrow and splenic cells extracted from tumor-bearing and control mice (n = 3/group) were coincubated with the optical analog LLP2A-Cy5 and mouse B220, CD4, Gr1, and Mac1 antibodies and analyzed by fluorescence-activated cell sorting. Human radiation dose estimates for 64Cu-LLP2A were extrapolated from mouse biodistribution data (6 time points, 0.78 MBq/animal, n = 4/group). Ten formalin-fixed paraffin-embedded bone marrow samples from deceased MM patients were stained with LLP2A-Cy5. Results: 64Cu-LLP2A and LLP2A-Cy5 demonstrated high specificity for VLA-4–positive mouse 5TGM1-GFP myeloma and nonmalignant inflammatory host cells such as T cells and myeloid/monocytic cells. Ex vivo flow cytometric analysis supported a direct effect of myeloma on increased VLA-4 expression in host hematopoietic microenvironmental elements. SUVs and the number of medullar lesions detected by 64Cu-LLP2A PET corresponded with increased monoclonal (M) protein (g/dL) in tumor-bearing mice over time (3.29 ± 0.58 at week 0 and 9.97 ± 1.52 at week 3). Dynamic PET with 64Cu-LLP2A and 18F-FDG demonstrated comparable SUV in the prominent lesions in the femur. Human radiation dose estimates indicated urinary bladder wall as the dose-limiting organ (0.200 mGy/MBq), whereas the dose to the red marrow was 0.006 mGy/MBq. The effective dose was estimated to be 0.017 mSv/MBq. Seven of the ten human samples displayed a high proportion of cells intensely labeled with LLP2A-Cy5 probe. Conclusion: 64Cu-LLP2A and LLP2A-Cy5 demonstrated binding specificity for VLA-4 in an immune-competent murine MM model. 64Cu-LLP2A displayed favorable dosimetry for human studies and is a potential imaging candidate for overexpressed VLA-4. ER -