RT Journal Article SR Electronic T1 PET Imaging of VEGFR-2 Expression in Lung Cancer with 64Cu-Labeled Ramucirumab JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 285 OP 290 DO 10.2967/jnumed.115.166462 VO 57 IS 2 A1 Haiming Luo A1 Christopher G. England A1 Stephen A. Graves A1 Haiyan Sun A1 Glenn Liu A1 Robert J. Nickles A1 Weibo Cai YR 2016 UL http://jnm.snmjournals.org/content/57/2/285.abstract AB Lung cancer accounts for 17% of cancer-related deaths worldwide, and most patients present with locally advanced or metastatic disease. Novel PET imaging agents for assessing vascular endothelial growth factor receptor-2 (VEGFR-2) expression can be used for detecting VEGFR-2–positive malignancies and subsequent monitoring of therapeutic response to VEGFR-2–targeted therapies. Here, we report the synthesis and characterization of an antibody-based imaging agent for PET imaging of VEGFR-2 expression in vivo. Methods: Ramucirumab (named RamAb), a fully humanized IgG1 monoclonal antibody, was conjugated to 2-S-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (p-SCN-Bn-NOTA) and labeled with 64Cu. Flow cytometry analysis and microscopy studies were performed to compare the VEGFR-2 binding affinity of RamAb and NOTA-RamAb. PET imaging and biodistribution studies were performed in nude mice bearing HCC4006 and A549 xenograft tumors. Ex vivo histopathology was performed to elucidate the expression patterns of VEGFR-2 in different tissues and organs to validate in vivo results. Results: Flow cytometry examination revealed the specific binding capacity of fluorescein isothiocyanate-RamAb to VEGFR-2, and no difference in VEGFR-2 binding affinity was seen between RamAb and NOTA-RamAb. After being labeled with 64Cu, PET imaging revealed specific and prominent uptake of 64Cu-NOTA-RamAb in VEGFR-2–positive HCC4006 tumors (9.4 ± 0.5 percentage injected dose per gram at 48 h after injection; n = 4) and significantly lower uptake in VEGFR-2–negative A549 tumors (4.3 ± 0.2 percentage injected dose per gram at 48 h after injection; n = 3). Blocking experiments revealed significantly lower uptake in HCC4006 tumors, along with histology analysis, further confirming the VEGFR-2 specificity of 64Cu-NOTA-RamAb. Conclusion: This study provides initial evidence that 64Cu-NOTA-RamAb can function as a PET imaging agent for visualizing VEGFR-2 expression in vivo, which may also find potential applications in monitoring the treatment response of VEGFR-2–targeted cancer therapy.