RT Journal Article SR Electronic T1 A Semiautomated Method for Quantification of F 18 Florbetapir PET Images JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 1736 OP 1741 DO 10.2967/jnumed.114.153494 VO 56 IS 11 A1 Abhinay D. Joshi A1 Michael J. Pontecorvo A1 Ming Lu A1 Daniel M. Skovronsky A1 Mark A. Mintun A1 Michael D. Devous, Sr. YR 2015 UL http://jnm.snmjournals.org/content/56/11/1736.abstract AB PET amyloid imaging is increasingly used in research trials related to Alzheimer disease and has potential as a quantitative biomarker. This study had 3 objectives: first, to describe a semiautomated quantitative method that does not require subject-specific MR imaging scans for estimating F 18 Florbetapir plaque binding using 10-min PET images; second, to evaluate the method’s accuracy for identifying positive and negative scans; and third, to correlate derived standardized uptake value ratios to neuropathologic measures of amyloid. Methods: The F 18 Florbetapir PET images are initially converted to Montreal Neurologic Institute brain atlas space using an internally developed PET target F 18 Florbetapir template. Subsequently, a single mean cortical standardized uptake value ratio (mcSUVr) is calculated from the mean standardized uptake value of 6 cortical regions normalized to a reference region. Four reference regions were explored: whole cerebellum, cerebellar gray matter, pons, and centrum semiovale. The performance of the resultant mcSUVrs were evaluated in 74 young cognitively normal subjects (age < 50 y) with a negligible likelihood of amyloid β pathology, and in 59 deceased subjects with autopsy-based amyloid β neuritic plaque measure who underwent F 18 Florbetapir PET imaging before death. Results: Significant correlations were obtained between mcSUVrs and 3 different pathologic measures of amyloid deposition at autopsy using all 4 reference regions, with the whole-cerebellum mcSUVr correlating most strongly across pathologic measures (r = 0.71–0.75, P < 0.0001). Using the whole-cerebellum mcSUVr and a threshold mcSUVr of less than 1.10, 100% of young cognitively normal subjects were correctly classified as amyloid-negative (mcSUVr range, 0.87–1.08). Similarly, 20 of 20 autopsy-negative subjects showed mcSUVrs of 1.10 or less, whereas 38 of 39 pathology-verified amyloid-positive subjects had mcSUVrs of more than 1.10. Conclusion: This semiautomated F 18 Florbetapir PET quantification method yielded mcSUVrs that significantly correlated with measures of amyloid pathology at autopsy. The method also effectively discriminated autopsy-identified amyloid-positive and -negative cases using a whole-cerebellum mcSUVr threshold of 1.10.