TY - JOUR T1 - Glypican-3–Targeted <sup>89</sup>Zr PET Imaging of Hepatocellular Carcinoma JF - Journal of Nuclear Medicine JO - J Nucl Med SP - 799 LP - 804 DO - 10.2967/jnumed.113.132118 VL - 55 IS - 5 AU - Jonathan G. Sham AU - Forrest M. Kievit AU - John R. Grierson AU - Robert S. Miyaoka AU - Matthew M. Yeh AU - Miqin Zhang AU - Raymond S. Yeung AU - Satoshi Minoshima AU - James O. Park Y1 - 2014/05/01 UR - http://jnm.snmjournals.org/content/55/5/799.abstract N2 - Hepatocellular carcinoma (HCC) is a devastating malignancy in which imperfect imaging plays a primary role in diagnosis. Glypican-3 (GPC3) is an HCC-specific cell surface proteoglycan overexpressed in most HCCs. This paper presents the use of 89Zr-conjugated monoclonal antibody against GPC3 (89Zr-αGPC3) for intrahepatic tumor localization using PET. Methods: Polymerase chain reaction confirmed relative GPC3 expression in cell lines. In vitro binding, in vivo biodistribution, and small-animal PET studies were performed on GPC3-expressing HepG2 and non–GPC3-expressing HLF and RH7777 cells and orthotopic xenografts. Results: 89Zr-αGPC3 demonstrated antibody-dependent, antigen-specific tumor binding. HepG2 liver tumors exhibited high peak uptake (836.6 ± 86.6 percentage injected dose [%ID]/g) compared with background liver (27.5 ± 1.6 %ID/g). Tumor-to-liver contrast ratio was high and peaked at 32.5. The smallest HepG2 tumor (&lt;1 mm) showed lower peak uptake (42.5 ± 6.4 %ID/g) and tumor-to-liver contrast (1.57) but was still clearly visible on PET. Day 7 tissue activity was still substantial in HepG2 tumors (466.4 ± 87.6 %ID/g) compared with control RH7777 tumors (3.9 ± 1.3 %ID/g, P &lt; 0.01), indicating antigen specificity by 89Zr-αGPC3. HepG2 tumor treated with unlabeled αGPC3 or heat-denatured 89Zr-αGPC3 demonstrated tumor activity (2.1 %ID/g) comparable to that of control xenografts, confirming antibody dependency. Conclusion: This study demonstrated the feasibility of using 89Zr-αGPC3 to image HCC in the liver, as well as the qualitative determination of GPC3 expression via small-animal PET. The ability to clarify the identity of small liver lesions with an HCC-specific PET probe would provide clinicians with vital information that could significantly alter patient management, warranting further investigation for clinical translation. ER -