PT - JOURNAL ARTICLE AU - Matthias Glaser AU - Peter Iveson AU - Susan Hoppmann AU - Bård Indrevoll AU - Anthony Wilson AU - Joseph Arukwe AU - Antonios Danikas AU - Rajiv Bhalla AU - Duncan Hiscock TI - Three Methods for <sup>18</sup>F Labeling of the HER2-Binding Affibody Molecule Z<sub>HER2:2891</sub> Including Preclinical Assessment AID - 10.2967/jnumed.113.122465 DP - 2013 Nov 01 TA - Journal of Nuclear Medicine PG - 1981--1988 VI - 54 IP - 11 4099 - http://jnm.snmjournals.org/content/54/11/1981.short 4100 - http://jnm.snmjournals.org/content/54/11/1981.full SO - J Nucl Med2013 Nov 01; 54 AB - Human epidermal growth factor receptor (HER2)–targeted Affibody molecules radiolabeled with 18F allow the noninvasive assessment of HER2 status in vivo through PET imaging. Such agents have the potential to improve patient management by selecting individuals for HER2-targeted therapies and allowing therapy monitoring. The aim of this study was to assess different 18F radiolabeling strategies of the HER2-specific Affibody molecule ZHER2:2891, preclinically determine the biologic efficacy of the different radiolabel molecules, and select a preferred radiolabeling strategy to progress for automated manufacture. Methods: Cysteine was added to the C terminus of the Affibody molecule for the coupling of maleimide linkers, and 3 radiolabeling strategies were assessed: silicon-fluoride acceptor approach (18F-SiFA), 18F-AlF-NOTA, and 4-18F-fluorobenzaldehyde (18F-FBA). The biodistributions of the radiolabeled Affibody molecules were then determined in naïve CD-1 nude mice, and tumor targeting was assessed in CD-1 nude mice bearing high-HER2-expressing NCI-N87 tumors and low-HER2-expressing A431 tumors. The 111In-ABY-025 compound, which has demonstrable clinical utility, served as a reference tracer. Results: The non–decay-corrected radiochemical yields based on starting 18F-fluoride using the 18F-FBA, 18F-SiFA, and 18F-AlF-NOTA methods were 13% ± 3% (n = 5), 38% ± 2% (n = 3), and 11% ± 4% (n = 6), respectively. In naïve mice, both the 18F-AlF-NOTA-ZHER2:2891 and the 111In-ABY-025 compounds showed a significant kidney retention (70.3 ± 1.3 and 73.8 ± 3.0 percentage injected dose [%ID], respectively, at 90 min after injection), which was not observed for 18F-FBA-ZHER2:2891 or 18F-SiFA-ZHER2:2891 (4.8 ± 0.6 and 10.1 ± 0.7 %ID, respectively, at 90 min). The 18F-SiFA-ZHER2:2891 conjugate was compromised by increasing bone retention over time (5.3 ± 1.0 %ID/g at 90 min after injection), indicating defluorination. All the radiolabeled Affibody molecules assessed showed significantly higher retention in NCI-N87 tumors than A431 tumors at all time points (P &lt; 0.05), and PET/CT imaging of 18F-FBA-ZHER2:2891 in a dual NCI-N87/A431 xenograft model demonstrated high tumor-to-background contrast for NCI-N87 tumors. Conclusion: The HER2 Affibody molecule ZHER2:2891 has been site-selectively radiolabeled by three 18F conjugation methods. Preliminary biologic data have identified 18F-FBA-ZHER2:2891 (also known as GE226) as a favored candidate for further development and radiochemistry automation.