TY - JOUR T1 - (<em>S</em>)-4-(3-<sup>18</sup>F-Fluoropropyl)-<span class="sc">l</span>-Glutamic Acid: An <sup>18</sup>F-Labeled Tumor-Specific Probe for PET/CT Imaging—Dosimetry JF - Journal of Nuclear Medicine JO - J Nucl Med SP - 861 LP - 866 DO - 10.2967/jnumed.112.112581 VL - 54 IS - 6 AU - Kamilla Smolarz AU - Bernd Joachim Krause AU - Frank-Philipp Graner AU - Franziska Martina Wagner AU - Christina Hultsch AU - Claudia Bacher-Stier AU - Richard B. Sparks AU - Susan Ramsay AU - Lüder M. Fels AU - Ludger M. Dinkelborg AU - Markus Schwaiger Y1 - 2013/06/01 UR - http://jnm.snmjournals.org/content/54/6/861.abstract N2 - The glutamic acid derivative (S)-4-(3-18F-Fluoropropyl)-l-glutamic acid (18F-FSPG, alias BAY 94-9392), a new PET tracer for the detection of malignant diseases, displayed promising results in non–small cell lung cancer patients. The aim of this study was to provide dosimetry estimates for 18F-FSPG based on human whole-body PET/CT measurements. Methods: 18F-FSPG was prepared by a fully automated 2-step procedure and purified by a solid-phase extraction method. PET/CT scans were obtained for 5 healthy volunteers (mean age, 59 y; age range, 51–64 y; 2 men, 3 women). Human subjects were imaged for up to 240 min using a PET/CT scanner after intravenous injection of 299 ± 22.5 MBq of 18F-FSPG. Image quantification, time–activity data modeling, estimation of normalized number of disintegrations, and production of dosimetry estimates were performed using the RADAR (RAdiation Dose Assessment Resource) method for internal dosimetry and in general concordance with the methodology and principles as presented in the MIRD 16 document. Results: Because of the renal excretion of the tracer, the absorbed dose was highest in the urinary bladder wall and kidneys, followed by the pancreas and uterus. The individual organ doses (mSv/MBq) were 0.40 ± 0.058 for the urinary bladder wall, 0.11 ± 0.011 for the kidneys, 0.077 ± 0.020 for the pancreas, and 0.030 ± 0.0034 for the uterus. The calculated effective dose was 0.032 ± 0.0034 mSv/MBq. Absorbed dose to the bladder and the effective dose can be reduced significantly by frequent bladder-voiding intervals. For a 0.75-h voiding interval, the bladder dose was reduced to 0.10 ± 0.012 mSv/MBq, and the effective dose was reduced to 0.015 ± 0.0010 mSv/MBq. Conclusion: On the basis of the distribution and biokinetic data, the determined radiation dose for 18F-FSPG was calculated to be 9.5 ± 1.0 mSv at a patient dose of 300 MBq, which is of similar magnitude to that of 18F-FDG (5.7 mSv). The effective dose can be reduced to 4.5 ± 0.30 mSv (at 300 MBq), with a bladder-voiding interval of 0.75 h. ER -