RT Journal Article SR Electronic T1 Synthesis and In Vitro and In Vivo Evaluation of Hypoxia-Enhanced 111In-Bombesin Conjugates for Prostate Cancer Imaging JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 1605 OP 1612 DO 10.2967/jnumed.112.117986 VO 54 IS 9 A1 Zhengyuan Zhou A1 Nilesh K. Wagh A1 Sunny M. Ogbomo A1 Wen Shi A1 Yinnong Jia A1 Susan K. Brusnahan A1 Jered C. Garrison YR 2013 UL http://jnm.snmjournals.org/content/54/9/1605.abstract AB Receptor-targeted agents, such as gastrin-releasing peptide receptor (BB2r)–targeted peptides, have been investigated extensively in preclinical and clinical studies. In an attempt to increase the effectiveness of diagnostic or radiotherapeutic agents, we have begun to explore the incorporation of the hypoxia-selective prodrug 2-nitroimidazole into receptor-targeted peptides. Hypoxia is a well-known characteristic of many solid tumors, including breast, prostate, and pancreatic cancers. The aim of this approach is to use the hypoxia-trapping capability of 2-nitroimidazoles to increase the retention of the agent in hypoxic, BB2r-positive tumors. We have demonstrated that incorporation of one or more 2-nitroimidazoles into the BB2r-targeted peptide significantly increases the in vitro retention of the agent in hypoxic prostate cancer cells. The study described herein represents our first investigation of the in vivo properties of these hypoxia-enhanced BB2r-targeted agents in a PC-3 xenograft mouse model. Methods: Four 111In-labeled BB2r-targeted conjugates—111In-1, 111In-2, 111In-3, and 111In-4, composed of 2-nitroimidazole moieties of 0, 1, 2, and 3, respectively—were synthesized, labeled, and purified. The BB2r binding affinities, externalization, and protein-association properties of these radioconjugates were assessed using the BB2r-positive PC-3 human prostate cancer cell line under hypoxic and normoxic environments. The in vivo biodistribution and micro-SPECT/CT imaging of the 111In-1, 111In-2, and 111In-4 radioconjugates were investigated in PC-3 tumor–bearing severely combined immunodeficient mice. Results: All conjugates and natIn-conjugates demonstrated nanomolar binding affinities. 111In-1, 111In-2, 111In-3, and 111In-4 demonstrated 41.4%, 60.7%, 69.1%, and 69.4% retention, correspondingly, of internalized radioactivity under hypoxic conditions relative to 34.8%, 35.3%, 33.2%, and 29.7% retention, respectively, under normoxic conditions. Protein-association studies showed significantly higher levels of association under hypoxic conditions for 2-nitroimidazole–containing BB2r-targeted radioconjugates than for controls. On the basis of the initial 1-h uptake in the PC-3 tumors, 111In-1, 111In-2, and 111In-4 demonstrated tumor retentions of 1.5%, 6.7%, and 21.0%, respectively, by 72 h after injection. Micro-SPECT/CT imaging studies of 111In-1, 111In-2, and 111In-4 radioconjugates resulted in clear delineation of the tumors. Conclusion: On the basis of the in vitro and in vivo studies, the BB2r-targeted agents that incorporated 2-nitroimidazole moieties demonstrated improved retention. These results indicate that further exploration into the potential of hypoxia-selective trapping agents for BB2r-targeted agents, as well as other targeted compounds, is warranted.