RT Journal Article SR Electronic T1 Inactivation of HNSCC Cells by 90Y-Labeled Cetuximab Strictly Depends on the Number of Induced DNA Double-Strand Breaks JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 416 OP 423 DO 10.2967/jnumed.111.101857 VO 54 IS 3 A1 Jarob Saker A1 Malte Kriegs A1 Martin Zenker A1 Jan-Martin Heldt A1 Iris Eke A1 Hans-Jürgen Pietzsch A1 Reidar Grénman A1 Nils Cordes A1 Cordula Petersen A1 Michael Baumann A1 Jörg Steinbach A1 Ekkehard Dikomey A1 Ulla Kasten-Pisula YR 2013 UL http://jnm.snmjournals.org/content/54/3/416.abstract AB Radioimmunotherapy is considered to have great potential for efficient and highly specific treatment of tumors. The aim of this study was to determine the efficacy of radioimmunotherapy when using 90Y-labeled cetuximab and to determine to what degree induction and repair of DNA double-strand breaks (DSBs) are decisive for this approach. Methods: This study was performed with 9 cell lines of squamous cell carcinoma of the head and neck (HNSCC) differing strongly in epidermal growth factor receptor (EGFR) expression. The radionuclide 90Y was coupled by the chelator trans-cyclohexyl-diethylene-triamine-pentaacetic acid (CHX-A″-DTPA)/linker construct to the EGFR-directed antibody cetuximab to yield 90Y-Y-CHX-A″-DTPA-cetuximab with a specific activity of approximately 1.2 GBq/mg. EGFR expression was determined by immunofluorescence and Western blotting, cetuximab binding by fluorescence-activated cell sorter analysis, the number of DSBs by immunofluorescence staining γH2AX/53BP1-positive repair foci, and cell survival by colony formation. Results: For the 9 HNSCC cell lines, cetuximab binding correlated with the amount of EGFR present in the cell membrane (r2 = 0.967, P < 0.001). When cells were exposed to 90Y-Y-CHX-A″-DTPA-cetuximab, the number of induced DSBs increased linearly with time (r2 = 0.968, P = 0.016). This number was found to correlate with the amount of membranous EGFR (r2 = 0.877, P = 0.006). Most DSBs were repaired during incubation at 37°C, but the small number of remaining DSBs still correlated with the amount of membranous EGFR (24 h: r2 = 0.977, P < 0.001; 48 h: r2 = 0.947, P < 0.001). Exposure to 90Y-Y-CHX-A″-DTPA-cetuximab also resulted in efficient cell killing, whereby the extent of cell killing correlated strongly with the respective number of remaining DSBs (r2 = 0.989, P < 0.001) and with the amount of membranous EGFR (r2 = 0.967, P < 0.001). No cell killing was observed for UTSCC15 cells with low EGFR expression, in contrast to the strong reduction of 86% measured for UTSCC14 cells showing a strong overexpression of EGFR. Conclusion: 90Y-Y-CHX-A″-DTPA-cetuximab affected cell survival through the induction of DSBs. This treatment was especially efficient for HNSCC cells strongly overexpressing EGFR, whereas no effect was seen for cells with low levels of EGFR expression. Therefore, EGFR-directed radioimmunotherapy using 90Y-Y-CHX-A″-DTPA-cetuximab appears to be a powerful tool that can be used to inactivate tumors with strong EGFR overexpression, which are often characterized by a pronounced radioresistance.