RT Journal Article SR Electronic T1 Comparison of Fully Automated Computer Analysis and Visual Scoring for Detection of Coronary Artery Disease from Myocardial Perfusion SPECT in a Large Population JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 221 OP 228 DO 10.2967/jnumed.112.108969 VO 54 IS 2 A1 Reza Arsanjani A1 Yuan Xu A1 Sean W. Hayes A1 Mathews Fish A1 Mark Lemley, Jr. A1 James Gerlach A1 Sharmila Dorbala A1 Daniel S. Berman A1 Guido Germano A1 Piotr Slomka YR 2013 UL http://jnm.snmjournals.org/content/54/2/221.abstract AB We compared the performance of fully automated quantification of attenuation-corrected (AC) and noncorrected (NC) myocardial perfusion SPECT (MPS) with the corresponding performance of experienced readers for detection of coronary artery disease (CAD). Methods: Rest–stress 99mTc-sestamibi MPS studies (n = 995; 650 consecutive cases with coronary angiography and 345 with likelihood of CAD < 5%) were obtained by MPS with AC. The total perfusion deficit (TPD) for AC and NC data was compared with the visual summed stress and rest scores of 2 experienced readers. Visual reads were performed in 4 consecutive steps with the following information progressively revealed: NC data, AC + NC data, computer results, and all clinical information. Results: The diagnostic accuracy of TPD for detection of CAD was similar to both readers (NC: 82% vs. 84%; AC: 86% vs. 85%–87%; P = not significant) with the exception of the second reader when clinical information was used (89%, P < 0.05). The receiver-operating-characteristic area under the curve (ROC AUC) for TPD was significantly better than visual reads for NC (0.91 vs. 0.87 and 0.89, P < 0.01) and AC (0.92 vs. 0.90, P < 0.01), and it was comparable to visual reads incorporating all clinical information. The per-vessel accuracy of TPD was superior to one reader for NC (81% vs. 77%, P < 0.05) and AC (83% vs. 78%, P < 0.05) and equivalent to the second reader (NC, 79%; and AC, 81%). The per-vessel ROC AUC for NC (0.83) and AC (0.84) for TPD was better than that for the first reader (0.78–0.80, P < 0.01) and comparable to that of the second reader (0.82–0.84, P = not significant) for all steps. Conclusion: For detection of ≥70% stenoses based on angiographic criteria, a fully automated computer analysis of NC and AC MPS data is equivalent for per-patient and can be superior for per-vessel analysis, when compared with expert analysis.