PT - JOURNAL ARTICLE AU - Laetitia Imbert AU - Sylvain Poussier AU - Philippe R. Franken AU - Bernard Songy AU - Antoine Verger AU - Olivier Morel AU - Didier Wolf AU - Alain Noel AU - Gilles Karcher AU - Pierre-Yves Marie TI - Compared Performance of High-Sensitivity Cameras Dedicated to Myocardial Perfusion SPECT: A Comprehensive Analysis of Phantom and Human Images AID - 10.2967/jnumed.112.107417 DP - 2012 Dec 01 TA - Journal of Nuclear Medicine PG - 1897--1903 VI - 53 IP - 12 4099 - http://jnm.snmjournals.org/content/53/12/1897.short 4100 - http://jnm.snmjournals.org/content/53/12/1897.full SO - J Nucl Med2012 Dec 01; 53 AB - Differences in the performance of cadmium-zinc-telluride (CZT) cameras or collimation systems that have recently been commercialized for myocardial SPECT remain unclear. In the present study, the performance of 3 of these systems was compared by a comprehensive analysis of phantom and human SPECT images. Methods: We evaluated the Discovery NM 530c and DSPECT CZT cameras, as well as the Symbia Anger camera equipped with an astigmatic (IQ⋅SPECT) or parallel-hole (conventional SPECT) collimator. Physical performance was compared on reconstructed SPECT images from a phantom and from comparable groups of healthy subjects. Results: Classifications were as follows, in order of performance. For count sensitivity on cardiac phantom images (counts⋅s−1⋅MBq−1), DSPECT had a sensitivity of 850; Discovery NM 530c, 460; IQ⋅SPECT, 390; and conventional SPECT, 130. This classification was similar to that of myocardial counts normalized to injected activities from human images (respective mean values, in counts⋅s−1⋅MBq−1: 11.4 ± 2.6, 5.6 ± 1.4, 2.7 ± 0.7, and 0.6 ± 0.1). For central spatial resolution: Discovery NM 530c was 6.7 mm; DSPECT, 8.6 mm; IQ⋅SPECT, 15.0 mm; and conventional SPECT, 15.3 mm, also in accordance with the analysis of the sharpness of myocardial contours on human images (in cm−1: 1.02 ± 0.17, 0.92 ± 0.11, 0.64 ± 0.12, and 0.65 ± 0.06, respectively). For contrast-to-noise ratio on the phantom: Discovery NM 530c had a ratio of 4.6; DSPECT, 4.1; IQ⋅SPECT, 3.9; and conventional SPECT, 3.5, similar to ratios documented on human images (5.2 ± 1.0, 4.5 ± 0.5, 3.9 ± 0.6, and 3.4 ± 0.3, respectively). Conclusion: The performance of CZT cameras is dramatically higher than that of Anger cameras, even for human SPECT images. However, CZT cameras differ in that spatial resolution and contrast-to-noise ratio are better with the Discovery NM 530c, whereas count sensitivity is markedly higher with the DSPECT.