RT Journal Article SR Electronic T1 Inhibition of Poly(ADP-Ribose) Polymerase Enhances the Toxicity of 131I-Metaiodobenzylguanidine/Topotecan Combination Therapy to Cells and Xenografts That Express the Noradrenaline Transporter JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 1146 OP 1154 DO 10.2967/jnumed.111.095943 VO 53 IS 7 A1 McCluskey, Anthony G. A1 Mairs, Robert J. A1 Tesson, Mathias A1 Pimlott, Sally L. A1 Babich, John W. A1 Gaze, Mark N. A1 Champion, Sue A1 Boyd, Marie YR 2012 UL http://jnm.snmjournals.org/content/53/7/1146.abstract AB Targeted radiotherapy using 131I-metaiodobenzylguanidine (131I-MIBG) has produced remissions in some neuroblastoma patients. We previously reported that combining 131I-MIBG with the topoisomerase I inhibitor topotecan induced long-term DNA damage and supraadditive toxicity to noradrenaline transporter (NAT)–expressing cells and xenografts. This combination treatment is undergoing clinical evaluation. This present study investigated the potential of poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP-1) inhibition, in vitro and in vivo, to further enhance 131I-MIBG/topotecan efficacy. Methods: Combinations of topotecan and the PARP-1 inhibitor PJ34 were assessed for synergism in vitro by combination-index analysis in SK-N-BE(2c) (neuroblastoma) and UVW/NAT (NAT-transfected glioma) cells. Three treatment schedules were evaluated: topotecan administered 24 h before, 24 h after, or simultaneously with PJ34. Combinations of PJ34 and 131I-MIBG and of PJ34 and 131I-MIBG/topotecan were also assessed using similar scheduling. In vivo efficacy was measured by growth delay of tumor xenografts. We also assessed DNA damage by γH2A.X assay, cell cycle progression by fluorescence-activated cell sorting analysis, and PARP-1 activity in treated cells. Results: In vitro, only simultaneous administration of topotecan and PJ34 or PJ34 and 131I-MIBG induced supraadditive toxicity in both cell lines. All scheduled combinations of PJ34 and 131I-MIBG/topotecan induced supraadditive toxicity and increased DNA damage in SK-N-BE(2c) cells, but only simultaneous administration induced enhanced efficacy in UVW/NAT cells. The PJ34 and 131I-MIBG/topotecan combination treatment induced G2 arrest in all cell lines, regardless of the schedule of delivery. In vivo, simultaneous administration of PJ34 and 131I-MIBG/topotecan significantly delayed the growth of SK-N-BE(2c) and UVW/NAT xenografts, compared with 131I-MIBG/topotecan therapy. Conclusion: The antitumor efficacy of topotecan, 131I-MIBG, and 131I-MIBG/topotecan combination treatment was increased by PARP-1 inhibition in vitro and in vivo.