RT Journal Article SR Electronic T1 Targeting Angiogenesis Using a C-Type Atrial Natriuretic Factor–Conjugated Nanoprobe and PET JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 1956 OP 1963 DO 10.2967/jnumed.111.089581 VO 52 IS 12 A1 Liu, Yongjian A1 Pressly, Eric D. A1 Abendschein, Dana R. A1 Hawker, Craig J. A1 Woodard, Geoffrey E. A1 Woodard, Pamela K. A1 Welch, Michael J. YR 2011 UL http://jnm.snmjournals.org/content/52/12/1956.abstract AB Sensitive, specific, and noninvasive detection of angiogenesis would be helpful in discovering new strategies for the treatment of cardiovascular diseases. Recently, we reported the 64Cu-labeled C-type atrial natriuretic factor (CANF) fragment for detecting the upregulation of natriuretic peptide clearance receptor (NPR-C) with PET on atherosclerosis-like lesions in an animal model. However, it is unknown whether NPR-C is present and overexpressed during angiogenesis. The goal of this study was to develop a novel CANF-integrated nanoprobe to prove the presence of NPR-C and offer sensitive detection with PET during development of angiogenesis in mouse hind limb. Methods: We prepared a multifunctional, core-shell nanoparticle consisting of DOTA chelators attached to a poly(methyl methacrylate) core and CANF-targeting moieties attached to poly(ethylene glycol) chain ends in the shell of the nanoparticle. Labeling of this nanoparticle with 64Cu yielded a high-specific-activity nanoprobe for PET imaging NPR-C receptor in a mouse model of hind limb ischemia–induced angiogenesis. Histology and immunohistochemistry were performed to assess angiogenesis development and NPR-C localization. Results: 15O-H2O imaging showed blood flow restoration in the previously ischemic hind limb, consistent with the development of angiogenesis. The targeted DOTA-CANF-comb nanoprobe showed optimized pharmacokinetics and biodistribution. PET imaging demonstrated significantly higher tracer accumulation for the targeted DOTA-CANF-comb nanoprobe than for either the CANF peptide tracer or the nontargeted control nanoprobe (P < 0.05, both). Immunohistochemistry confirmed NPR-C upregulation in the angiogenic lesion with colocalization in both endothelial and smooth muscle cells. PET and immunohistochemistry competitive receptor blocking verified the specificity of the targeted nanoprobe to NPR-C receptor. Conclusion: As evidence of its translational potential, this customized DOTA-CANF-comb nanoprobe demonstrated superiority over the CANF peptide alone for imaging NPR-C receptor in angiogenesis.