PT - JOURNAL ARTICLE AU - Takahiro Higuchi AU - Kenji Fukushima AU - Christoph Rischpler AU - Takuro Isoda AU - Mehrbod S. Javadi AU - Hayden Ravert AU - Daniel P. Holt AU - Robert F. Dannals AU - Igal Madar AU - Frank M. Bengel TI - Stable Delineation of the Ischemic Area by the PET Perfusion Tracer <sup>18</sup>F-Fluorobenzyl Triphenyl Phosphonium After Transient Coronary Occlusion AID - 10.2967/jnumed.110.085993 DP - 2011 Jun 01 TA - Journal of Nuclear Medicine PG - 965--969 VI - 52 IP - 6 4099 - http://jnm.snmjournals.org/content/52/6/965.short 4100 - http://jnm.snmjournals.org/content/52/6/965.full SO - J Nucl Med2011 Jun 01; 52 AB - 18F-fluorobenzyl triphenyl phosphonium (FBnTP) has recently been introduced as a myocardial perfusion PET agent. We used a rat model of transient coronary occlusion to determine the stability of the perfusion defect size over time and the magnitude of redistribution. Methods: Wistar rats (n = 15) underwent thoracotomy and 2-min occlusion of the left coronary artery (LCA), followed by reperfusion. During occlusion, 18F-FBnTP (92.5 MBq) and 201Tl-thallium chloride (0.74 MBq) were injected intravenously. One minute before the animals were sacrificed at 5, 45, and 120 min after reperfusion, the LCA was occluded again and 2% Evans blue was injected intravenously to determine the ischemic territory. The hearts were excised, frozen, and sliced for serial dual-tracer autoradiography and histology. Dynamic in vivo 18F-FBnTP PET was performed on a subgroup of animals (n = 4). Results: 18F-FBnTP showed stable ischemic defects at all time points after tracer injection and reperfusion. The defects matched the blue dye defect (y = 0.97x+1.5, R2 = 0.94, y = blue-dye defect, x = 18F-FBnTP defect). Count density analysis showed no defect fill-in at 45 min but slightly increased activity at 120 min (LCA/remote uptake ratio = 0.19 ± 0.02, 0.19 ± 0.05, and 0.34 ± 0.06 at 5, 45, and 120 min, respectively, P &lt; 0.05). For comparison, 201Tl showed complete redistribution at 120 min (LCA/remote = 0.42 ± 0.04, 0.72 ± 0.03, and 0.97 ± 0.05 at 5, 45, and 120 min, respectively, P &lt; 0.001). Persistence of the 18F-FBnTP defect over time was confirmed by in vivo dynamic small-animal PET. Conclusion: In a transient coronary occlusion model, perfusion defect size using the new PET agent 18F-FBnTP remained stable for at least 45 min and matched the histologically defined ischemic area. This lack of significant redistribution suggests a sufficient time window for future clinical protocols with tracer injection remote from the scanner, such as in a stress testing laboratory or chest pain unit.