RT Journal Article SR Electronic T1 A Novel Neutrophil-Specific PET Imaging Agent: cFLFLFK-PEG-64Cu JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 790 OP 797 DO 10.2967/jnumed.108.056127 VO 50 IS 5 A1 Landon W. Locke A1 Mahendra D. Chordia A1 Yi Zhang A1 Bijoy Kundu A1 Dylan Kennedy A1 Jessica Landseadel A1 Li Xiao A1 Karen D. Fairchild A1 Stuart S. Berr A1 Joel Linden A1 Dongfeng Pan YR 2009 UL http://jnm.snmjournals.org/content/50/5/790.abstract AB The synthesis and validation of a new, highly potent 64Cu-labeled peptide, cFLFLFK-PEG-64Cu, that targets the formyl peptide receptor (FPR) on leukocytes is described. The peptide ligand is an antagonist of the FPR, designed not to elicit a chemotactic response resulting in neutropenia. Evidence for the selective binding of this synthesized ligand to neutrophils is provided. PET properties of the compound were evaluated in a mouse model of lung inflammation. Methods: The FPR-specific peptide, cinnamoyl-F-(D)L-F-(D)L-FK (cFLFLF), was sequentially conjugated with a bifunctional polyethylene glycol moiety (PEG, 3.4 kD) and a 2,2′,2″,2″′-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) through a lysine (K) spacer and finally labeled with 64Cu-CuCl2 to form cFLFLFK-PEG-64Cu. The binding affinity and stimulation potency of the ligand toward human neutrophils were assessed in vitro. Blood kinetic and organ biodistribution properties of the peptide were studied in the mouse. Ten male C57BL/6 mice were used in this study; 4 control mice and 6 administered Klebsiella pneumonia. PET/CT scans were performed to assess the localization properties of the labeled peptide in lungs 18 h after tracer administration. Lung standardized uptake values (SUVs) were correlated with lung neutrophil activity as measured by myeloperoxidase assays. Immunohistochemistry was performed to confirm that neutrophils constitute the majority of infiltrating leukocytes in lung tissue 24 h after Klebsiella exposure. Results: In vitro binding assays of the compound cFLFLFK-PEG-64Cu to the neutrophil FPR yielded a dissociation constant of 17.7 nM. The functional superoxide stimulation assay exhibited negligible agonist activity of the ligand with respect to neutrophil superoxide production. The pegylated peptide ligand exhibited a blood clearance half-life of 55 ± 8 min. PET 18 h after tracer administration revealed mean lung SUVs and lung myeloperoxidase activities for Klebsiella-infected mice that were 5- and 6-fold higher, respectively, than those for control mice. Immunohistochemistry staining confirmed that the cellular infiltrate in lungs of Klebsiella-infected mice was almost exclusively neutrophils at the time of imaging. Conclusion: This new radiolabeled peptide targeting the FPR binds to neutrophils in vitro and accumulates at sites of inflammation in vivo. This modified peptide may prove to be a useful tool to probe inflammation or injury.