PT - JOURNAL ARTICLE AU - Sally J. DeNardo AU - Ruiwu Liu AU - Huguette Albrecht AU - Arutselvan Natarajan AU - Julie L. Sutcliffe AU - Carolyn Anderson AU - Li Peng AU - Riccardo Ferdani AU - Simon R. Cherry AU - Kit S. Lam TI - <sup>111</sup>In-LLP2A-DOTA Polyethylene Glycol–Targeting α4β1 Integrin: Comparative Pharmacokinetics for Imaging and Therapy of Lymphoid Malignancies AID - 10.2967/jnumed.108.056903 DP - 2009 Apr 01 TA - Journal of Nuclear Medicine PG - 625--634 VI - 50 IP - 4 4099 - http://jnm.snmjournals.org/content/50/4/625.short 4100 - http://jnm.snmjournals.org/content/50/4/625.full SO - J Nucl Med2009 Apr 01; 50 AB - N-[[4-[[[(2-ethylphenyl)amino]carbonyl]amino]phenyl]acetyl]-Nε-6-[(2E)-1-oxo-3-(3-pyridinyl-2-propenyl)]-l-lysyl-l-2-aminohexanedioyl-(1-amino-1-cyclohexane)carboxamide (LLP2A) is a high-affinity, high-specificity peptidomimetic ligand (inhibitory concentration of 50% = 2 pM) that binds the activated α4β1 integrin found on a variety of malignant lymphoid cell lines. To better determine whether this ligand holds promise for imaging and therapy in lymphoid malignancies, 6 LLP2A derivatives, as LLP2A-1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid (LLP2A-DOTA) and LLP2A-DOTA-polyethylene glycol (LLP2A-DOTA-PEG), were designed, synthesized, and radiolabeled with 111In. Comparative pharmacokinetic studies in mice with Raji B-cell lymphoma xenografts were then complemented by small-animal PET of the lead molecular LLP2A format using 64Cu-LLP2A-11-bis(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane (64Cu-LLP2A-CB-TE2A). Methods: LLP2A-DOTA and LLP2A-CB-TE2A were prepared using solid-phase synthesis; LLP2A-DOTA-PEG2,000, LLP2A-DOTA-PEG5,000, LLP2A-DOTA-PEG10,000, (LLP2A-DOTA)2PEG10,000, and (LLP2A-DOTA)4PEG10,000 were prepared by PEGylation. 111In radiolabeling of DOTA and 64Cu radiolabeling of CB-TE2A conjugates yielded 370–1,850 and 3,700–7,400 kBq/μg (10–50 and 100–200 μCi/μg), respectively. The pharmacokinetics of the six 111In radioconjugates were studied in vivo using biodistribution data (4 and 24 h) and whole-body autoradiography (24 h) in mice with Raji tumor xenografts. 64Cu-LLP2A-CB-TE2A was imaged (4 and 24 h) on a small-animal PET scanner in the same mouse model. Results: The highest tumor uptake in pharmacokinetic studies was obtained with LLP2A-DOTA and (LLP2A-DOTA)4-PEG10,000. For 111In-LLP2A-DOTA (1 nM) at 4 and 24 h after injection, ratios of tumor to blood and tumor to nontumor (normal) organ (T/NT) were 8 to 35:1 for all organs or tissue except the spleen, marrow, and kidney, which were between 2:1 and 1:1. Tetravalent (LLP2A-DOTA)4-PEG10,000 (1.1 nM) had tumor uptake similar to the univalent LLP2A-DOTA but higher liver, marrow, and kidney uptake. The excellent T/NT of LLP2A was also demonstrated by small-animal PET with 64Cu-LLP2A-CB-TE2A at both 4 and 24 h after injection; obvious spleen targeting was apparent, but little kidney or liver activity was observed. Conclusion: Of the conjugates investigated, the univalent, non-PEGylated ligand 111In-LLP2A-DOTA exhibited the best T/NT ratios and showed the greatest potential for imaging of α4β1 in human lymphoma. Furthermore, this univalent non-PEGylated LLP2A format, as 64Cu-LLP2A-CB-TE2A, demonstrated excellent tumor targeting by small-animal PET and warrants further investigation as an agent for the study of α4β1 expression in human lymphoid malignancies.