TY - JOUR T1 - A Lesion Detection Observer Study Comparing 2-Dimensional Versus Fully 3-Dimensional Whole-Body PET Imaging Protocols JF - Journal of Nuclear Medicine JO - J Nucl Med SP - 714 LP - 723 VL - 45 IS - 4 AU - Carole Lartizien AU - Paul E. Kinahan AU - Claude Comtat Y1 - 2004/04/01 UR - http://jnm.snmjournals.org/content/45/4/714.abstract N2 - We compared the impact of 2-dimensional (2D) and fully 3-dimensional (3D) acquisition modes on the performance of human observers in detecting and localizing tumors in whole-body 18F-FDG images. Methods: We selected protocols based on noise equivalent count (NEC) rates derived from a series of 2D and fully 3D whole-body patient and phantom acquisitions on a dual-mode PET scanner. The fully 3D peak NEC value for a standard 70-kg patient was achieved for an injected dose of approximately 444 MBq (12 mCi) assuming a 90-min delay before acquisition, whereas the 2D peak value was never reached. The protocols were therefore set to those corresponding to a 444-MBq injected dose in fully 3D and 2D and a 740-MBq (20 mCi) injected dose in 2D that was considered as the maximum allowable dose. We used a non-Monte Carlo simulator to generate multiple realizations of whole-body PET data based on the geometry of the mathematic cardiac torso phantom (MCAT) with accurate noise properties. Two-dimensional and fully 3D acquisition times were set to 5 min per bed position. Spherical 1-cm-diameter lesions (targets) with random locations and contrasts were distributed in different organs. The simulated 2D datasets were reconstructed using attenuation-weighted ordered-subsets expectation maximization ((AW)OSEM) and the fully 3D datasets were reconstructed with FORE+(AW)OSEM (FORE = Fourier rebinning). Five human observers located and ranked the targets using a volumetric display of the whole-body PET data to replicate the clinical practice. An alternate free-response operating characteristic (AFROC) analysis of the human observer reports was performed for each protocol and each organ separately. Results: The 2D protocol corresponding to 740-MBq injected dose allowed the overall best detection performance. It was followed by the fully 3D acquisition at the peak fully 3D NEC rate from a 444-MBq injected dose. A 2D acquisition corresponding to a 444-MBq injected dose was ranked last. Differences in detection performance were organ specific. Conclusion: This study showed that, for this patient size and scanner type, the fully 3D acquisition mode allowed better or equivalent detection performance than the 2D mode for an injected dose corresponding to the peak fully 3D NEC rate. The 2D acquisition protocol combined with a higher injected dose resulted in the highest detectabilities. ER -