RT Journal Article SR Electronic T1 Correction of Partial-Volume Effect for PET Striatal Imaging: Fast Implementation and Study of Robustness JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 1715 OP 1726 VO 43 IS 12 A1 Vincent Frouin A1 Claude Comtat A1 Anthonin Reilhac A1 Marie-Claude Grégoire YR 2002 UL http://jnm.snmjournals.org/content/43/12/1715.abstract AB PET imaging of D2 receptors or 18F-l-dopa metabolism are reference protocols to follow and study neurodegenerative diseases, but the accuracy of striatal PET imaging is limited by the partial-volume effect (PVE). For such studies, the geometric transfer matrix (GTM) method has been proposed to correct the regional mean values for PVE and is now widely used. Methods: The GTM method models the geometric interactions induced by the PET system between the anatomic regions in which PVE correction is performed. This implies estimation of the corresponding regional spread function (RSF). The literature describes 2 implementations for the RSF calculation; they differ in the way the point spread function (PSF) of the imaging system is modeled, but no comparison or discussion has been given. The first and reference implementation uses an accurate intrinsic detector PSF that is applied in the sinogram space. The second uses a global PSF that is applied in the image space. In this work, we compared the 2 GTM implementations for 3-dimensional (3D) PET striatal imaging using Monte Carlo simulations and a phantom study. We studied the robustness of the GTM correction with respect to residual registration errors between PET and anatomy and with respect to residual segmentation errors. Results: Despite the differences in RSF calculation and computation cost between the 2 implementations, similar recovery results were obtained (between 95% and 100%). The study of robustness of the GTM correction yielded 2 results. A realistic residual misregistration between the anatomic and PET images did not modify the algorithm accuracy but decreased its precision. Conversely, a realistic residual missegmentation of the anatomic regions submitted to GTM correction decreased the correction accuracy. Conclusion: A simple but efficient implementation in the image space of the GTM method yields accurate PVE correction in striatal regions in studies with 3D PET and enables clinical use. The method is less sensitive to residual misregistration errors between PET and anatomy than to residual missegmentation of the anatomy. Special care should be taken with segmentation of the regions to correct for PVE.