RT Journal Article SR Electronic T1 68Ga-DOTATATE Prepared from Cyclotron-Produced 68Ga: An Integrated Solution from Cyclotron Vault to Safety Assessment and Diagnostic Efficacy in Neuroendocrine Cancer Patients JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 232 OP 238 DO 10.2967/jnumed.121.263768 VO 64 IS 2 A1 Sébastien Tremblay A1 Jean-François Beaudoin A1 Ophélie Bélissant Benesty A1 Samia Ait-Mohand A1 Véronique Dumulon-Perreault A1 Étienne Rousseau A1 Éric E. Turcotte A1 Brigitte Guérin YR 2023 UL http://jnm.snmjournals.org/content/64/2/232.abstract AB Cyclotron production of 68Ga is a promising approach to supply 68Ga radiopharmaceuticals. To validate this capability, an integrated solution for a robust synthesis of 68Ga-DOTATATE prepared from cyclotron-produced 68Ga was achieved. A retrospective comparison analysis was performed on patients who underwent PET/CT imaging after injection of DOTATATE labeled with 68Ga produced by a cyclotron or eluted from a generator to demonstrate the clinical safety and diagnostic efficacy of the radiopharmaceutical as a routine standard-of-care diagnostic tool in the clinic. Methods: An enriched pressed 68Zn target was irradiated by a cyclotron with a proton beam set at 12.7 MeV for 100 min. The fully automated process uses an in-vault dissolution system in which a liquid distribution system transfers the dissolved target to a dedicated hot cell for the purification of 68GaCl3 and radiolabeling of DOTATATE using a cassette-based automated module. Quality control tests were performed on the resulting tracer solution. The internal radiation dose for 68Ga-DOTATATE was based on extrapolation from rat biodistribution experiments. A retrospective comparison analysis was performed on patients who underwent PET/CT imaging after injection of DOTATATE labeled with cyclotron- or generator-produced 68Ga. Results: The synthesis of 68Ga-DOTATATE (20.7 ± 1.3 GBq) with high apparent molar activity (518 ± 32 GBq/μmol at the end of synthesis) was completed in 65 min, and the radiopharmaceutical met the requirements specified in the European Pharmacopoeia monograph on 68Ga-chloride (accelerator-produced) solution for radiolabeling. 68Ga-DOTATATE was stable for at least 5 h after formulation. The dosimetry calculated with OLINDA for cyclotron- and generator-produced 68Ga-DOTATATE was roughly equivalent. The SUVmean or SUVmax of tumoral lesions with cyclotron-produced 68Ga-DOTATATE was equivalent to that with generator-produced 68Ga. Among physiologic uptake levels, a significant difference was found in kidneys, spleen, and stomach wall, with lower values in cyclotron-produced 68Ga-DOTATATE in all cases. Conclusion: Integrated cyclotron production achieves reliable high yields of clinical-grade 68Ga-DOTATATE. The clinical safety and imaging efficacy of cyclotron-produced 68Ga-DOTATATE in humans provide supporting evidence for its use in routine clinical practice.