RT Journal Article SR Electronic T1 Synthesis, Preclinical Evaluation, and a Pilot Clinical PET Imaging Study of 68Ga-Labeled FAPI Dimer JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 862 OP 868 DO 10.2967/jnumed.121.263016 VO 63 IS 6 A1 Zhao, Liang A1 Niu, Bo A1 Fang, Jianyang A1 Pang, Yizhen A1 Li, Siyang A1 Xie, Chengrong A1 Sun, Long A1 Zhang, Xianzhong A1 Guo, Zhide A1 Lin, Qin A1 Chen, Haojun YR 2022 UL http://jnm.snmjournals.org/content/63/6/862.abstract AB Cancer-associated fibroblasts (CAFs) are crucial components of the tumor microenvironment. Fibroblast activation protein (FAP) is overexpressed in CAFs. FAP-targeted molecular imaging agents, including the FAP inhibitors (FAPIs) 04 and 46, have shown promising results in tumor diagnosis. However, these molecules have a relatively short tumor-retention time for peptide-targeted radionuclide therapy applications. We aimed to design a 68Ga-labeled FAPI dimer, 68Ga-DOTA-2P(FAPI)2, to optimize the pharmacokinetics and evaluate whether this form is more effective than its monomeric analogs. Methods: 68Ga-DOTA-2P(FAPI)2 was synthesized on the basis of the quinoline-based FAPI variant (FAPI-46), and its binding properties were assayed in CAFs. Preclinical pharmacokinetics were determined in FAP-positive patient-derived xenografts using small-animal PET and biodistribution experiments. The effective dosimetry of 68Ga-DOTA-2P(FAPI)2 was evaluated in 3 healthy volunteers, and PET/CT imaging of 68Ga-FAPI-46 and 68Ga-DOTA-2P(FAPI)2 was performed on 3 cancer patients. Results: 68Ga-DOTA-2P(FAPI)2 was stable in phosphate-buffered saline and fetal bovine serum for 4 h. The FAPI dimer showed high affinity and specificity for FAP in vitro and in vivo. The tumor uptake of 68Ga-DOTA-2P(FAPI)2 was approximately 2-fold stronger than that of 68Ga-FAPI-46 in patient-derived xenografts, whereas healthy organs showed low tracer uptake and fast body clearance. The effective dose of 68Ga-DOTA-2P(FAPI)2 was 1.19E−02 mSv/MBq, calculated using OLINDA. Finally, the PET/CT scans of the 3 cancer patients revealed higher intratumoral uptake of 68Ga-DOTA-2P(FAPI)2 than of 68Ga-FAPI-46 in all tumor lesions (SUVmax, 8.1–39.0 vs. 1.7–24.0, respectively; P < 0.001). Conclusion: 68Ga-DOTA-2P(FAPI)2 has increased tumor uptake and retention properties compared with 68Ga-FAPI-46, and it could be a promising tracer for both diagnostic imaging and targeted therapy of malignant tumors with positive expression of FAP.