RT Journal Article SR Electronic T1 Imaging Neuroinflammation in Neurodegenerative Disorders JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 45S OP 52S DO 10.2967/jnumed.121.263200 VO 63 IS Supplement 1 A1 Joseph C. Masdeu A1 Belen Pascual A1 Masahiro Fujita YR 2022 UL http://jnm.snmjournals.org/content/63/Supplement_1/45S.abstract AB Neuroinflammation plays a major role in the etiopathology of neurodegenerative diseases, including Alzheimer and Parkinson diseases, frontotemporal lobar degeneration, and amyotrophic lateral sclerosis. In vivo monitoring of neuroinflammation using PET is critical to understand this process, and data are accumulating in this regard, thus a review is useful. From PubMed, we retrieved publications using any of the available PET tracers to image neuroinflammation in humans as well as selected articles dealing with experimental animal models or the chemistry of currently used or potential radiotracers. We reviewed 280 articles. The most common PET neuroinflammation target, translocator protein (TSPO), has limitations, lacking cellular specificity and the ability to separate neuroprotective from neurotoxic inflammation. However, TSPO PET is useful to define the amount and location of inflammation in the brain of people with neurodegenerative disorders. We describe the characteristics of TSPO and other potential PET neuroinflammation targets and PET tracers available or in development. Despite target and tracer limitations, in recent years there has been a sharp increase in the number of reports of neuroinflammation PET in humans. The most studied has been Alzheimer disease, in which neuroinflammation seems initially neuroprotective and neurotoxic later in the progression of the disease. We describe the findings in all the major neurodegenerative disorders. Neuroinflammation PET is an indispensable tool to understand the process of neurodegeneration, particularly in humans, as well as to validate target engagement in therapeutic clinical trials.