RT Journal Article SR Electronic T1 18F-FDG PET is Superior to WHO Grading as a Prognostic Tool in Neuroendocrine Neoplasms and Useful in Guiding PRRT: A Prospective 10-Year Follow-up Study JF Journal of Nuclear Medicine JO J Nucl Med FD Society of Nuclear Medicine SP 808 OP 815 DO 10.2967/jnumed.120.244798 VO 62 IS 6 A1 Tina Binderup A1 Ulrich Knigge A1 Camilla Bardram Johnbeck A1 Annika Loft A1 Anne Kiil Berthelsen A1 Peter Oturai A1 Jann Mortensen A1 Birgitte Federspiel A1 Seppo W. Langer A1 Andreas Kjaer YR 2021 UL http://jnm.snmjournals.org/content/62/6/808.abstract AB Accurate grading of patients with neuroendocrine neoplasms (NENs) is essential for risk stratification and optimal choice of therapy. Currently, grading is based on histologically assessed degree of tumor proliferation. The aim of the present study was to assess the long-term prognostic value of 18F-FDG PET imaging for risk stratification of NENs and compare it with tumor grading (World Health Organization 2010 classification). Methods: We conducted a prospective cohort study evaluating the prognostic value of 18F-FDG PET imaging and compared it with histologic grading. Enrolled were 166 patients of all grades and with histologically confirmed NENs of gastroenteropancreatic origin. The primary endpoint was overall survival (OS). Progression-free survival (PFS) was a secondary endpoint. In addition, OS in relation to peptide receptor radionuclide therapy (PRRT) was analyzed as an exploratory endpoint. The median follow-up time was 9.8 y. Results: Analysis of the whole cohort revealed that a positive 18F-FDG PET scan was associated with a shorter OS than a negative 18F-FDG PET scan (hazard ratio: 3.8; 95% CI: 2.4–5.9; P < 0.001). In G1 and G2 patients (n = 140), a positive 18F-FDG PET scan was the only identifier of high risk for death (hazard ratio: 3.6; 95% CI, 2.2–5.9; P < 0.001). In multivariate analysis, 18F-FDG PET, G3 tumor, ≥2 liver metastases, and ≥2 prior therapies were independent prognostic factors for OS, and 18F-FDG PET, G3 tumor, and ≥3 liver metastases were independent prognostic factors for PFS. For patients receiving PRRT, 18F-FDG–negative cases had a significantly longer survival than 18F-FDG–positive cases, whereas no difference was identified for tumor grading. 18F-FDG–positive patients receiving PRRT had a significantly longer median survival than patients not receiving PRRT (4.4 vs. 1.4 y, P = 0.001), whereas no difference was seen for 18F-FDG–negative patients. Conclusion: 18F-FDG PET is useful for risk stratification of all NEN grades and is superior to histologic grading. 18F-FDG PET could differentiate G1 and G2 tumors into low- and high-risk groups. In the selection of therapy and for risk stratification of NEN patients, 18F-FDG PET status should be considered.