TY - JOUR T1 - <sup>131</sup>Iodine-GD2-ch14.18 scintigraphy to evaluate option for radioimmunotherapy in patients with advanced tumors JF - Journal of Nuclear Medicine JO - J Nucl Med DO - 10.2967/jnumed.120.261854 SP - jnumed.120.261854 AU - Ying Zhang AU - Juergen Kupferschlaeger AU - Peter Lang AU - Gerald Reischl AU - Rupert Handgretinger AU - Christian la Fougere AU - Helmut Dittmann Y1 - 2021/05/01 UR - http://jnm.snmjournals.org/content/early/2021/05/27/jnumed.120.261854.abstract N2 - The tumor-selective ganglioside antigene GD2 is frequently expressed on neuroblastomas and to a lesser extent also on sarcomas and neuroendocrine tumors. Aim of our study was to evaluate tumor targeting and biodistribution of iodine-131-labeled chimeric GD2-antibody clone 14/18 (131I-GD2-ch14.18) in patients with late-stage disease in order to identify eligibility for radioimmunotherapy. Methods: 20 patients (neuroblastoma n = 9; sarcoma n = 9; pheochromocytoma n = 1, neuroendocrine tumor n = 1) were involved in this study. 21 to 131 MBq (1-2 MBq/kg) of I-131-GD2-ch14.18 (0.5 -1.0 mg) were injected intravenously. Planar scintigraphy was performed within 1 h from injection (d0), on d1, d2, d3, and d6 or d7 to analyse tumor uptake and tracer biodistribution. Serial blood samples were collected in 4 individuals. Irradiation dose to tumor lesions and organs was calculated using Olinda® software. Results: The tumor targeting rate on a per-patient base was 65% (13/20) with 6/9 neuroblastomas showing uptake of I-GD2-ch14.18. Tumor lesions showed maximum uptake at 20-64 h p.i. (effective half-life in tumors 33-192 h). The tumor irradiation dose varied between 0.52 and 30.2 mGy/MBq (median: 9.08, n = 13). Visual analysis showed prominent blood pool activity up to d2/d3 p.i.. No pronounced uptake was observed in the bone marrow compartment or in the kidneys. Bone marrow dose was calculated at 0.07-0.47 mGy/MBq (median: 0.14) while blood dose was 1.1-4.7 mGy/MBq. Two patients (1 neuroblastoma and 1 pheochromocytoma) with particularly high tumor uptake underwent radioimmunotherapy using 2.3 and 2.9 GBq of I-GD2-ch14.18 both achieving stable disease. Overall survival was 17 and 6 months, respectively. Conclusion: I-GD2-ch14.18 is cleared slowly from blood resulting in good tumor to background contrast not until 2 d after application. With acceptable red marrow and organ dose, radioimmunotherapy is an option for patients with high tumor uptake. However, due to the variable GD2-expression, decision should be made depending on pretherapeutic dosimetry. ER -