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Radiopharmaceutical therapy (RPT), with its targeted delivery of cyto-
toxic ionizing radiation, demonstrates significant potential for treating
a wide spectrum of malignancies, with particularly unique benefits for
metastatic disease. There is an opportunity to optimize RPTs and
enhance the precision of theranostics by moving beyond a one-size-
fits-all approach and using patient-specific image-based dosimetry
for personalized treatment planning. Such an approach, however,
requires accurate methods and tools for the mathematic modeling
and prediction of dose and clinical outcome. To this end, the SNMMI
AI-Dosimetry Working Group is promoting the paradigm of computa-
tional nuclear oncology: mathematic models and computational tools
describing the hierarchy of etiologic mechanisms involved in RPT
dose response. This includes radiopharmacokinetics for image-based
internal dosimetry and radiobiology for the mapping of dose response
to clinical endpoints. The former area originates in pharmacotherapy,
whereas the latter originates in radiotherapy. Accordingly, models and
methods developed in these predecessor disciplines serve as a foun-
dation on which to develop a repurposed set of tools more appropri-
ate to RPT. Over the long term, this computational nuclear oncology
framework also promises to facilitate widespread cross-fertilization of
ideas between nuclear medicine and the greater mathematic and
computational oncology communities.
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Nuclear medicine is in a renaissance through radiopharmaceu-
tical therapies (RPTs) that have demonstrated efficacy, particularly
in treatment of advanced metastatic cancers (1–3). Radiopharma-
ceuticals are administered systemically and deliver radiation locally
as molecules preferentially bind to cancer-specific targets.
Current labels of federally approved RPTs, however, follow a

one-size-fits-all approach with fixed activities, numbers of cycles,
and intercycle time intervals (4,5). This practice neglects patient-
specific characteristics that modulate therapeutic response, includ-
ing biokinetics, risk factors, functional organ reserves, and tumor
heterogeneity (6–9). Consequently, the delivered doses to organs
or tumor, and resulting outcomes, can vary significantly (10,11),
sometimes by orders of magnitude (12,13).
Accordingly, there has been interest in personalizing RPT.

Recently, road maps toward this goal have been proposed (7,14),
with an emphasis on theranostic digital twins: virtual, patient-
specific avatars parameterized with pretreatment diagnostic imag-
ing and clinical input, simulated to prospectively predict dosimetry
and outcomes and optimized to design individualized activity
prescriptions and treatment plans, including iterative feedback
and treatment adaptation between cycles, as shown in Figure 1.
The development and implementation of theranostic digital twins
require research advancements on many fronts, highlighted by a
recent review (7). Examples (15,16) of problems that must be
resolved include population-level initialization and patient-specific
fine-tuning of model parameters; standardization and harmoniza-
tion of heterogeneously collected data; and verification, validation,
and uncertainty quantification.
Central to all of these is the identification and selection of robust

mathematic models mapping input treatment protocols to predicted
clinical outcomes. Therapeutic response to RPT is driven by a combi-
nation of 2 ingredients: pharmacokinetics (17,18), which determines
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the agent biodistribution and resulting physical dose to tumors and
organs, and radiation biology (19–21), which translates this spatio-
temporal dose distribution to biologic effects, including efficacy and
toxicity. These ingredients are relics of RPT’s historic relationship to
2 therapeutic paradigms: pharmacotherapy (for pharmacokinetics)
and radiation therapy (for radiobiology). Both of these communities
have independently developed mathematic formalisms and compu-
tational techniques tailored to their purposes. Thus, integration of
methods from these 2 specialties is a promising place to start in
identifying an appropriate set of tools for RPT.
However, it is important to realize that this hybridization also

endows RPT with unique features that differentiate it from its pre-
decessors. For example, whereas concepts
from traditional pharmacokinetics carry
over, in RPT we now have the additional
feature that the site of action of the thera-
peutic agent (radiation) is not commensu-
rate with the physiologic biodistribution
of the pharmaceutical but also depends
on physical characteristics of the emitted
radiation tracks in relation to organ anatomy.
In addition, the emission of radiation endows
us with the unique opportunity to image
delivery in real time. Likewise, even though
biologic effects are driven by radiation,
the radiobiology of external-beam radia-
tion therapy (EBRT) is not directly trans-
ferable to RPT, because of differences in
spatial and temporal heterogeneity between

the 2 modalities. These originate, again, in physiology-mediated
biokinetics, which needs to be estimated with nuclear medicine
imaging in order to calibrate radiobiologic calculations.
If RPT can be considered related to the predecessor therapies of

pharmacotherapy and radiation therapy, then we define computa-
tional nuclear oncology (CNO) as the combination of methods
from these 2 respective communities, but again with distinct prop-
erties originating from nuclear medicine, as illustrated in Figure 2.
With this in mind, the goal of the current paper is to review techni-
ques available for mathematic and computational modeling in the
predecessor disciplines, with an eye toward how various toolkits
must to be adapted and integrated to deal with peculiarities of RPT.

REPURPOSING PHYSIOLOGICALLY BASED
PHARMACOKINETICS (PBPK) INTO PHYSIOLOGICALLY
BASED RADIOPHARMACOKINETICS (PBRPK) FOR
PERSONALIZED RPT DOSIMETRY

Reliable modeling and prediction of pharmacokinetics is the
first step toward clinical RPT dosimetry (22–25). The mathematic
methods appropriate to this task are rooted in research originating
from the drug discovery and development communities (26–28).
Particularly relevant to RPT is PBPK modeling. PBPK models
represent organs as individual compartments connected via the cir-
culatory system, which facilitates tracer accumulation, transfer,
and exchange through mechanisms such as perfusion or perme-
ability constraints. Each organ is further broken down into sub-
compartments (e.g., interstitial, vascular, and cellular) linked by
physical and biochemical pathways. The choice of compartments
and level of detail included are specific to each drug or radiophar-
maceutical, its biodistribution, and the targeted pathologic process.
Reference tissue models, which obviate individual blood concen-
tration calibrations, are also a viable approach.
PBPK models have a rich tradition in pharmacology and are

now a routine tool for in silico drug discovery and development
(26). The diffusion of PBPK into the RPT community is a more
recent phenomenon (23,25) that has opened a wide array of excit-
ing opportunities. It has also, however, introduced new challenges
arising from the idiosyncrasies of radiopharmaceuticals.
Most notably, RPT delivers therapy nonlocally via the emission

of radiation tracks, which propagate to distal targets throughout
the body. Thus, PBPK models of the radioactive emitter must also
be paired with internal dosimetry (29,30), which translates the bio-
distribution in different source organs to the resulting absorbed

FIGURE 1. Diagram comparing present one-size-fits-all RPT approach
(A) with vision of precision RPTs (B). Central to such a future is develop-
ment of robust models that translate therapeutic inputs to clinical outputs,
from which one can prescribe optimal protocols in cycle 1 and refine the
process in later cycles to adaptively optimize treatment.

FIGURE 2. RPT is hybridization of 2 therapeutic paradigms, pharmacotherapy and radiation ther-
apy, but with additional element of physiologically mediated delivery that can be imaged through
nuclear medicine. Accordingly, CNO may be considered analogous hybrid of pharmacokinetic
modeling and radiobiology-calibrated dosimetry, linked via intermediary of image-based internal
dosimetry. PD5 pharmacodynamics.
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dose (AD) to biologic targets. Such calculations are intricate,
necessitating the consideration of multiple factors (31), including
the isotope’s decay scheme, including energy, emitted particle, and
decay branching ratios; particle range and half-life; the material,
typically biologic tissue, where decay occurs and energy is depos-
ited; and the total number of disintegrations in the tissue.
Approaches to internal dosimetry in RPT range from organ-level
S values (32–34) to detailed 3-dimensional approaches, such as
voxel S values (35–37) and Monte Carlo simulations (38–40).
The inclusion of dosimetry distinguishes pharmacokinetic model-
ing in RPT from more conventional pharmaceuticals. Further-
more, in RPT, hot and cold pharmaceuticals interact though decay
as well as through competition in binding to receptors (25,41),
which distinguishes such modeling sufficiently to justify its own
name: PBRPK.
In addition, radiopharmaceuticals also differ from more tradi-

tional agents by being traceable after administration via molecular
imaging (42,43), which quantifies accumulation and clearance of
the radiopharmaceutical in different tissues over time. Thus, RPT
offers possibilities for real-time imaging and assessment of the thera-
peutic biodistribution via simultaneous emission of photons. Com-
mon techniques for this include conjugate-view g-camera imaging,
SPECT, and hybrid SPECT/planar imaging (44), with SPECT
demonstrating superior accuracy (45,46). Furthermore, RPT also
allows for prospective dose prediction in addition to retrospective
dose assessment (47–49). By exploiting newly introduced high-
sensitivity long-axial-field-of-view and total-body PET scanners
(50–52), multiple-time-point and delayed pretherapy scans can be
used to infer individual-patient time–activity curves for theranostic
pairs (53). Notably, these recent innovations allow us, for the first
time, to observe pharmacokinetic dynamics spanning multiple time-
scales simultaneously, including both conventional drug biodistribu-
tion and clearance operating over the course of several hours or

days, along with more rapid uptake and washout processes that take
place over shorter timespans of 1–2 h.
Collectively, these efforts will lead to a future CNO pipeline,

illustrated in Figure 3, where pretherapy image-derived time–
activity curves from the diagnostic can be used to extrapolate and
parametrize a PBRPK model for the therapeutic. The resulting
model can be used to prospectively predict, for a given choice of
therapeutic protocol actions, the AD to tumors and normal organs.
Paired with appropriate models for translating AD to clinical end-
points (to be discussed in the next section), clinicians can tweak
protocol actions to optimize therapeutic efficacy.
Image-based PBRPK modeling and dosimetry have already

been applied to several interesting questions. Examples include
studies on the effects of vascular perfusion and receptor density on
tumor delivery (54); the effects of ligand amount, affinity, and
internalization on AD (55,56); the effects of time-point image
sampling on quantitative measures (57); the effect of tumor volume
on AD in kidneys and tumors (58); the prediction of therapeutic
biodistribution from biokinetics, tumor volume, and glomerular
filtration rate (59); and the impact of administration scheduling,
including single versus multiple-bolus injections, on AD (25).

RECALIBRATING EBRT RADIOBIOLOGY FOR MULTISCALE
RPT DOSIMETRY

After image-based pharmacokinetic estimation of AD, the
remaining step in the CNO pipeline is to translate this AD to clini-
cal outcomes. In EBRT, this goal is achieved using the methods of
radiobiology (60,61). Radiation kills cells by causing DNA damage
through mechanisms that include direct ionization, free radical gen-
eration, and activation of secondary processes. Double-strand
breaks are particularly harmful, leading to genetic information loss
and incorrect rejoining, which are often lethal. Factors such as cell

proliferation, differentiation, and DNA repair
capabilities determine the radiosensitivity of
a cell, which is also modified by dose rate,
oxygenation, and linear energy transfer.
The most commonly used clinical model

in EBRT for these effects is the linear-
quadratic model (62), sometimes modified
to incorporate factors such as incomplete
repair of sublethal damage. This model
serves as a springboard for deriving (63)
the biologic effective dose, which may
be thought of as a local calibration of the
spatiotemporal dose distribution to the cells
in a microscopic subvolume of the organ
or tumor. The remaining step is to translate
the overall distribution of the biologic
effective dose across the structure into an
overall tumor control probability or normal-
tissue complication probability. Essential in
this is consideration of the specific clinical
endpoint and the extent to which the organ
behaves serially (strong codependence of
the functional subunits) versus parallelly
(the functional subunits behaving mostly
autonomously). The tumor control probabil-
ity and normal-tissue complication probabil-
ity serve as conceptual underpinnings (64,65)
of the physical and dosimetric constraints

Model
Parameterization

Dose
Prediction

PBPK Models for Non-
Radioactive Agents

‘Theranostic’ Property:
Radiation for Imaging and Treatment

Image-Derived PB r PK Models for Prospective Dosimetry

+
=

FIGURE 3. PBPK modeling and simulation from drug discovery and development communities can
be applied to enable RPT dosimetry via theranostic principle, which enables estimation of patient-
specific pharmacokinetics with pretherapy PET imaging, and use these models to help prospectively
predict patient-specific therapeutic doses that can be verified with real-time SPECT imaging. PI5 after
injection. (PBPK figure adapted from (118), theranostics schematic adapted from (119), diagnostic PET
and therapeutic SPECT cartoons adapted from (120), model-parameterized PBRPK network adapted
from (8), and time-integrated activity–to–AD diagram adapted from (121).)

CNO FOR PRECISION RPT � Yusufaly et al. 3



built into modern EBRT treatment planning software, such as Var-
ian RapidPlan (66) or Accuray RayStation (67).
A pressing challenge for RPT, however, is that the radiobiologic

knowledge and assumptions built into EBRT treatment planning
are specifically configured for that modality. Currently, with lim-
ited data, RPT often assumes EBRT-derived dose limits. Although
in some cases (e.g., long-ranged b-emitting RPT with dose-rate
biologic effective dose corrections) such approaches might be rea-
sonable, it is generally agreed that the black-box application of
EBRT paradigms hinders the long-term development of RPT and
leads to suboptimal outcomes (68). Radiobiologic effects in RPT
(20,21) arise from distinct patterns of particle type, energy, trans-
port, range, and dose rate originating in pharmacokinetics, which
shapes dose in a way that is fundamentally different from EBRT
(69,70). As a result, the extent to which models and assumptions
used in EBRT can be extrapolated remain unclear.
This is especially important for a-emitters because of the preva-

lence of microdosimetric fluctuations at the cellular and subcellular
levels, phenomena that have no analog in photon EBRT. Relatedly,
understanding differences in DNA repair, cell death, and cell cycle
effects between the 2 modalities is essential. It is known that these
processes are sensitive to microenvironmental variations, such as
tumor hypoxia and vasculature or infiltration of immune cells and
products. Given the differences in radiation delivery between RPT
and EBRT, it is reasonable to assume that any radiation-induced
alterations to this microenvironment would also differ. Nuclear med-
icine, incidentally, is well suited to imaging such changes in order to
quantify biologic effectiveness.
Accordingly, developing robust methodologies to adapt EBRT-

based radiobiology to RPT, or create new RPT-specific models
de novo, is imperative. A good starting point to this end, illus-
trated in Figure 4, is to interface quantitative radiobiology with

PBRPK-derived inferences of the microscale dose distributions, with
all biologic effective dose, tumor control probability, and normal-
tissue complication probability models adjusted (71–73) to correct for
the differences in RPT and EBRT. This interfacing, however, is
made challenging by the need to model and the coupling of dosimet-
ric processes across multiple scales (74–76). Current image-derived
PBRPK dosimetry yields information on mean organ or tumor ADs
or on ADs per voxel of several-millimeter size. On the other hand,
radiobiologic modeling starts with DNA damage and cell death in tis-
sues, processes that occur at the microscale and nanoscale.
Various approaches exist for extrapolating observable organ-

level energies to doses at the suborgan (77,78), voxel (79), cellular
(73), and molecular (80,81) levels. Incorporating these subresolu-
tion nonuniformities into the radiobiologic simulations will be
important for reliable outcome prediction. These subgrid extrapo-
lation schemes are typically measured in vitro using preclinical
animal models (82). Examples of common software packages used
in performing such tasks include GEANT4 (83) and its extensions
(81,84), MCNP (85,86), FLUKA (87), PENELOPE (88,89), and
various components in the MIRDsoft platform (90).
However, in their present form, these tools are mostly of aca-

demic interest, and additional work is critically needed to bridge
them with clinical tools (44), examples including Rapid (91) or
Voximetry (92). It is encouraging that this area has recently seen
an increase in activity, particularly in Europe (21,93–95). Building
on this momentum, future work should prioritize preclinical investi-
gations of small-scale radiopharmaceutical distribution, radiation-
induced DNA damage and repair, and the coupling of macroscopic
imaging with these microscopic data. A noteworthy example to this
end built a cellular-level dosimetry model for targeted a-therapy
with Monte Carlo simulations, which was experimentally validated
in vitro for 212Pb (96).

FORWARD-LOOKING VISION: CNO
AS A BASIS FOR CROSS-SPECIALTY
DIGITAL TWINS

The previous sections have reviewed
computational predecessors of CNO, describ-
ing how they must be adapted for RPT. In so
doing, we have highlighted how prospective
image-based PBRPK dosimetry can calculate
tumor and organ AD and how radiobiologic
calculations supplemented by small-scale
subgrid dosimetry models can translate AD
into observed clinical effects for treatment
optimization. It is encouraging to see the
progress that has already been made in each
of these pieces. The natural next step is to
sync the pieces together and interface the
models with real-world clinical data, includ-
ing validation, verification, and uncertainty
quantification (97,98). The timing for these
efforts is ripe, given the recent calls in the
RPT community (68,99) for more robust
data collection and standardized reporting
of imaging, dosimetry, and outcomes. The
myriad technical and logistic challenges that
must be addressed to this end have been
reviewed elsewhere (3,100).
We would like to draw attention to an

intriguing, but often neglected, ancillary

+
=

Multiscale Absorbed Dose to Clinical Outcome Predictions for RPT

�� �

Small-Scale Biodistribution and DosimetryExternal-Beam Radiation Biology Modeling

� �

Physically Delivered
Dose Distribution

Distribution of Dead 
and Damaged Cells

Observed Follow-Up
Response/Toxicity

FIGURE 4. Concepts, tools, and models of external-beam radiobiology, from which much of modern
EBRT treatment planning is based, must be modified for RPT because of physiologically mediated
small-scale biodistribution and dosimetry, which modify radiation response via series of complex and
incompletely understood mechanisms. RPT-adapted radiobiologic modeling must ultimately be paired
with suitably estimated multiscale extrapolation to enable robust end-to-end prediction of clinical
outcome, illustrated here for the example of acute kidney injury. AKD 5 acute kidney disease;
AKI 5 acute kidney injury; CKD 5 chronic kidney disease; CVD 5 cardiovascular disease; IM 5 inner
medulla; ISOM 5 inner strip of outer medulla; OSOM 5 outer strip of outer medulla. (Multiscale anat-
omy diagrams adapted from (122), acute injury dynamic function schematic adapted from (123),
PET/CT adapted from (124), and multiscale dosimetry figure adapted from (125).)
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benefit of theranostic digital twins and the underlying CNO frame-
work discussed herein. In this review, we have emphasized links
between modeling paradigms from the communities of pharmaco-
therapy and radiation therapy to RPT. The resulting tools can
serve as a powerful unifying framework for cross-institutional data
sharing and model building across nuclear medicine clinics. How-
ever, in addition to facilitating intramodality sharing within the
RPT community, CNO is also a natural language for facilitating
intermodality sharing and cross-disciplinary fertilization with other
medical specialties. The desire and push for data-driven modeling
and digital twin personalization is not unique to nuclear medicine
(101–103), and the medical subspecialities associated with the pre-
decessor disciplines of CNO—medical oncology for pharmaco-
therapy (104,105) and radiation oncology for radiation therapy
(106,107)—have also seen recent enthusiasm for digital twins. By
emphasizing the relationship of RPT to these specialties, CNO
will allow the nuclear medicine community to pursue appropriate
stewardship of RPTs while also being able to synergistically inter-
act with medical “relatives.”
This will also serve as a gateway for more regular cross-

fertilization across the greater computational and mathematic oncol-
ogy community. The application of mathematics to cancer biology
and treatment response has a rich history, and recent years have seen
an explosive number of breakthroughs in the field. Examples of such
progress include ordinary differential equation models of tumor
growth and response (108), partial differential equation models of tis-
sue reorganization and metastasis (109), agent-based models of inter-
cellular interactions and behavior (110), stochastic models of tumor
ecoevolutionary extinction (111), and game-theoretic optimization of
combination and adaptive therapies (112). Clearly, nuclear medicine
and the RPT community have much to gain by synergizing with the
state-of-the-art mathematic and computational modeling tools. CNO,
as such, will facilitate the interdisciplinary communications necessary
to realizing these gains.

CONCLUDING THOUGHTS

In this article, we have introduced CNO as a computational
modeling approach that will ultimately enable personalization of
RPTs via theranostic digital twins. Our exposition highlighted how
RPT includes elements of both pharmacotherapy and radiation
therapy but maintains its unique identity. These interdisciplinary
origins, moreover, will help guide the nuclear medicine community
in further adapting and integrating computational tools from other
communities into the CNO toolkit.
As a final comment, it is irresistible to point out analogies and

similarities between this discussion and the machine learning areas
of large language models, foundation models, and artificial general
intelligence (113,114). Interest in these fields is predicated on the
idea that models trained on specific data modalities for particular
tasks can be repurposed, via transfer learning and other methods
(115), for application to new data modalities and tasks. Identifying
which features are task- and modality-specific, and determining
what can and cannot be transferred, is very much akin to the way
CNO keeps certain elements from its predecessors while discarding
others. One of the important lessons learned throughout the larger
oncology community is that there is no magic bullet for cancer
(116,117). A truly long-term approach to treatment will require a
multipronged strategy as flexible and adaptive as the tumor being
treated (112). Such visions are exciting to dream about but challeng-
ing to operationalize. We believe that CNO, and how it connects

RPT to pharmacotherapy and radiation therapy while emphasizing
its distinctiveness, will serve as an example to the medical commu-
nity on how to practically realize these goals.
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