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Alzheimer disease (AD) exhibits spatially heterogeneous 3- or 4-repeat
tau deposition across participants. Our overall goal was to develop an
automated method to quantify the heterogeneous burden of tau depo-
sition into a single number that would be clinically useful.Methods:We
used tau PET scans from 3 independent cohorts: theMayo Clinic Study
of Aging and Alzheimer’s Disease Research Center (Mayo, n 5 1,290),
the Alzheimer’s Disease Neuroimaging Initiative (ADNI, n 5 831),
and the Open Access Series of Imaging Studies (OASIS-3, n 5 430).
A machine learning binary classification model was trained on Mayo
data and validated on ADNI and OASIS-3 with the goal of predicting
visual tau positivity (as determined by 3 raters following Food and Drug
Administration criteria for 18F-flortaucipir). The machine learning model
used region-specific SUV ratios scaled to cerebellar crus uptake. We
estimated feature contributions based on an artificial intelligence–
explainable method (Shapley additive explanations) and formulated a
global tau summary measure, Tau Heterogeneity Evaluation in Alzhei-
mer’s Disease (THETA) score, using SUV ratios and Shapley additive
explanations for each participant. We compared the performance of
THETA with that of commonly used meta–regions of interest (ROIs)
using the Mini-Mental State Examination, the Clinical Dementia Rating–
Sum of Boxes, clinical diagnosis, and histopathologic staging. Results:
The model achieved a balanced accuracy of 95% on the Mayo test
set and at least 87% on the validation sets. It classified tau-positive
and -negative participants with an AUC of 1.00, 0.96, and 0.94 on the
Mayo, ADNI, and OASIS-3 cohorts, respectively. Across all cohorts,
THETA showed a better correlation with theMini-Mental State Examina-
tion and the Clinical Dementia Rating–Sum of Boxes (r $ 0.45, P ,

0.05) than did meta-ROIs (r , 0.44, P , 0.05) and discriminated
between participants who were cognitively unimpaired and those
who had mild cognitive impairment with an effect size of 10.09, com-
pared with an effect size of 3.08 for meta-ROIs. Conclusion: Our pro-
posed approach identifies positive tau PET scans and provides a

quantitative summary measure, THETA, that effectively captures het-
erogeneous tau deposition observed in AD. The application of THETA
for quantifying tau PET in AD exhibits great potential.
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Alzheimer disease is characterized by the accumulation of
b-amyloid plaques and neurofibrillary tangles in the brain. Neuro-
fibrillary tangles are composed of hyperphosphorylated tau proteins
that progress along predictable patterns, originating in the transen-
torhinal cortex and spreading to the limbic system and eventually
to the neocortex. The spread of tau leads to cognitive impairment
and dementia (1). The current understanding of Alzheimer disease
(AD) pathophysiology and neurodegeneration suggests that neuro-
fibrillary tangle accumulation correlates with disease progression
and precedes clinical symptoms, making tau a promising biomarker
for disease diagnosis and clinical trial designs (2). However, patho-
logic and imaging evidence reveals heterogeneous tau deposition
patterns in the AD brain across individuals (3,4).
PET imaging is used to visualize and assess tau deposition in

neurodegenerative disorders using radioligands that bind to paired
helical filaments of neurofibrillary tangles to detect and track tau
pathology in vivo (5). Preclinical AD PET studies indicate that tau
spreads throughout cortical regions along multiple trajectories (6).
Common tau PET quantification methods include meta–regions of
interest (ROIs) in the medial temporal lobe (MTL), temporal lobe,
and neocortex (7). However, these methods may overlook tau out-
side the meta-ROIs and underestimate focal tau depositions.
In this study, we followed visual rating criteria that relied on the

density and distribution of tau identified using the Food and Drug
Administration (FDA)–approved radiotracer 18F-flortaucipir (Tauvid;
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Lilly) for AD tau pathology at the B3 level (Braak stages V and VI)
(8). These criteria consider focal tau deposition and could overcome
the limitations of the meta-ROI–based methods. We hypothesized
that a machine learning (ML) model can be developed to identify
tau PET–positive scans by incorporating the visual ratings that
account for the spatial heterogeneity of tau to achieve improved
quantification. We aimed to, first, develop the model on a single-site
dataset using regional SUV ratios (SUVRs) and visual assessments
as targets and validate it on 2 independent datasets; second, compare
this model with temporal, MTL, and neocortical meta-ROIs based
on clinical scores and histopathologic staging; and third, develop a
summary measure by leveraging spatial heterogeneity captured by
the model.

MATERIALS AND METHODS

Study Participants
We included participants who had undergone 18F-flortaucipir tracer

tau PET in the Mayo Clinic Study of Aging and Mayo Alzheimer’s
Disease Research Center dataset (referred to as Mayo; n 5 1,290) (9),
the Alzheimer’s Disease Neuroimaging Initiative phase 2 or 3 (ADNI;
n 5 831), or the Open Access Series of Imaging Studies phase 3
(OASIS-3; n 5 430) (10). Individuals with frontotemporal dementia
were excluded. The Mayo Clinic Study of Aging is a population-based
study in Olmsted County, Minnesota, and the Alzheimer’s Disease
Research Center is a longitudinal clinical practice study. Both studies
have been approved by the Mayo Clinic and Olmsted Medical Center
Institutional Review Boards. The ADNI initiative was launched in
2003 with the primary goal of testing whether serial MRI, PET, other
biologic markers, and clinical and neuropsychological assessment can
be combined to measure progression of mild cognitive impairment
(MCI) and AD (www.adni-info.org). OASIS-3 is a longitudinal study
of cognitively normal individuals at various stages of cognitive decline
who have undergone MRI and PET (https://www.oasis-brains.org/).

Image Acquisition and Preprocessing
In Mayo, ADNI, and OASIS-3, 370 MBq of 18F-flortaucipir were

administered, with acquisition times varying: Mayo had a 20-min
acquisition at 80min after injection (11), whereas ADNI and OASIS-3
had a 30-min acquisition between 75 and 105min after injection.

The tau PET scans were rigidly coregistered to corresponding
T1-weighted MRI scans, and median values were taken for each
region. The MRI scans were initially tissue-class–segmented and divided
into atlas regions using the MCALT-ADIR122 atlas (12). Cortical and
subcortical regions were referenced to the cerebellar crus median uptake
to form SUVR units. These regional SUVR units were used both to
form the meta-ROIs and as inputs to our ML models.

Visual Assessment of Tau PET Scans
Three trained raters independently visually assessed tau PET images

scaled to average counts in a 2-dimensional cerebellum ROI. FDA-
approved official criteria for visual assessment were followed (8).
A positive scan was one with increased neocortical tracer uptake iso-
lated to the posterolateral temporal or occipital or parietal/precuneus
regions with or without frontal activity. A negative scan was one with no
increased neocortical activity or increased neocortical activity isolated to
the mesial temporal, anterolateral temporal, or frontal regions (Fig. 1).

Tau PET Status Using Meta-ROIs
The temporal meta-ROI (cut point, 1.23 SUVR) was the voxel-

weighted average of the median uptake in the entorhinal, amygdala,
parahippocampal, fusiform, inferior temporal, and middle temporal
regions normalized to the median uptake of the cerebral crus gray mat-
ter region used as reference (7). MTL (cut point, 1.30 SUVR) was the

unweighted average of MTL tau PET uptake in the left and right ento-
rhinal cortex and amygdala, and the neocortical meta-ROI (cut point,
1.37 SUVR) was the voxel-weighted average in the left and right mid-
dle temporal and inferior temporal gyri (13).

Training and Interpreting the ML Model
The model inputs were regional SUVRs, whereas the targets were

binary visual ratings. The Mayo dataset was used for training, with
80% (n 5 1,038) for training and 20% (n 5 252) for testing, parti-
tioned using stratified splitting (Supplemental Fig. 1; supplemental
materials are available at http://jnm.snmjournals.org). External valida-
tion was done on ADNI and OASIS-3.

A multilayer stack ensemble ML technique using repeated k-fold
bagging was applied to train the models (AutoGluon, version 0.8.2)
(14). Shapley additive explanation (SHAP), which is a model-agnostic
explainable AI technique that calculates input contributions to the
model predictions, was used to explain our models (15). SHAP was
chosen because of its better performance as reported previously (16).

Developing the Tau Summary Measure THETA (Tau
Heterogeneity Evaluation in Alzheimer’s Disease)

We developed a novel tau summary measure, THETA (https://
github.com/ADIR-Lab/THETA), calculated as a linear combination of
2 parts: the sum of the SHAP (wi) values of the model input SUVRs
(xi), and the weighted sum of the inputs with their SHAPs that fall
within the first and 99th percentiles (bw i) (Eq. 1). SHAPs represent the
individual contribution of each brain region (i) to the model’s predic-
tion. The first part captures overall feature importance by summing the
SHAP values (

Pm
i51 wi) across m number of regions. It sums up to the

predicted binary classification as a consequence of the property of
SHAP (15). The second part (

Pm
i51 bw ixi) focuses on the weighted con-

tribution of the brain regions whose SHAPs fall within the percentile
range. This part scales the SUVRs on the basis of their importance for
classification and can be important for encoding disease heterogeneity:

Q5
Xm
i51

wi1
Xm
i51

bw ixi: Eq. 1

The intuition behind Equation 1 was such that THETA can express
the degree of tau deposition quantitatively while accounting for tau
spatial heterogeneity. For example, in visually tau-positive concordant

FIGURE 1. Visual assessment of tau PET scans used in study. Elevated
signals are shown in color. Upper contrast value (UCV) for each participant
was calculated from scaled mean cerebellar counts adjusted to match
desired levels of color transitions.
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Mayo cases, regional THETA values were higher for mid-temporal
and inferior temporal regions in most participants because they dis-
played a typical AD tau deposition pattern and their rankings clearly
showed spatial spread (Supplemental Fig. 2). In these participants, the
first part summed up to one and the second component positively
weighted the mid-temporal and inferior temporal regions. This becomes
useful when, for example, the inferior temporal region is important in 2
concordant cases differing only by their degree of tau PET SUVR. In
such a scenario, THETA could appropriately reflect the degree of tau
deposition.

Lastly, the repeatability of THETA was assessed, and a high degree
of agreement was found when compared with scores generated by var-
ious ML models (Supplemental Fig. 3).

Statistical Analysis
Model performance was evaluated using

metrics such as the Matthew correlation
coefficient, balanced accuracy, precision,
recall, and the F1 score. The classification
was assessed using area under the receiver
operating characteristic curve (AUC), and
curves were compared using the DeLong
AUC nonparametric paired test. True-positive
and true-negative rates were used to assess
misclassification rates. The Spearman r accom-
panied by the Choi nonparametric test was
used to analyze correlation. The separation
between tau positives and tau negatives
was examined using Cohen d and 2-tailed
independent-samples t testing with Bonferroni
adjustment.

RESULTS

Characteristics of Study Population
In the Mayo cohort (average age, 67 y [SD, 14 y]), 55% were

male and 74% were cognitively unimpaired (CU); in ADNI (aver-
age age, 72 y [SD, 8 y]), 48% were male and 55% were CU; and
in OASIS-3 (average age, 70 y [SD, 8 y]), 43% were male and
86% were CU (Table 1). There was overall sample variability in
tau status, with 19% of visibly tau-positive cases in Mayo, 28% in
ADNI, and 14% in OASIS-3. Additionally, MTL and neocortical
tau positives were 14% for Mayo, 20% for ADNI, and 11% for
OASIS-3 (Table 1).

TABLE 1
Population Characteristics

Variable Mayo ADNI OASIS-3

Total number 1,290 831 430

Mean age (y) 67 (SD, 14) 72 (SD, 8) 70 (SD, 8)

Male 706 (55) 399 (48) 186 (43)

Female 584 (45) 432 (52) 244 (57)

CU 957 (74) 455 (55) 371 (86)

MCI 173 (13) 283 (34) 11 (3)

AD 121 (9) 93 (11) 48 (11)

Dementia with Lewy bodies 37 (3) — —

APOE4-positive 425 (34) 287 (40) 168 (39)

b-amyloid–positive 512 (40) 335 (43) 133 (32)

Tau-positive

Visual 245 (19) 230 (28) 61 (14)

MTL 243 (19) 255 (31) 80 (19)

Neocortical 202 (16) 183 (22) 57 (13)

Temporal 476 (37) 418 (50) 159 (37)

MTL and neocortical 183 (14) 170 (20) 49 (11)

Temporal and MTL 235 (18) 242 (29) 74 (17)

Temporal and neocortical 202 (16) 183 (22) 57 (13)

Data are number followed by percentage in parentheses, except for age.

FIGURE 2. Classification performance of model in all 3 datasets and comparison to meta-ROIs in
test set and whole dataset.
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Model Trained on Visual Ratings for Predicting Tau Positivity
After multiple cross-validation runs, the best model based on its

highest F1 score was selected. This model showed excellent bal-
anced accuracy, achieving scores of 98.58% during training and
95.43% during testing on the Mayo dataset. It also performed well
on the ADNI and OASIS-3 datasets, with scores of 87.74% and
87.03%, respectively.
Tau status was classified with AUCs of 1.00, 0.96, and 0.94 on

the Mayo, ADNI, and OASIS-3 datasets (Fig. 2; Table 2).

Model Performance in Comparison to Meta-ROIs
The meta-ROIs classified tau positivity with an AUC of 0.99 in

the Mayo test set (20%) and 0.94 overall (Fig. 2). The model out-
performed the meta-ROIs in the Mayo dataset, with the lowest
misclassification rates for both tau-positive and tau-negative cases
(3.67% and 0.48%, respectively). In the ADNI dataset, the tempo-
ral meta-ROI showed the least tau-positivity misclassification
(6.96%). In the OASIS-3 dataset, the model misclassified tau
negatives at the lowest rate (1.36%) but was second best in

tau-positive misclassification (24.59%), surpassed by the temporal
meta-ROI (18.03%) (Table 3).

THETA
Quantification of Spatial Heterogeneity in Tau PET Scans. We

demonstrate tau spatial heterogeneity captured by THETA in 2
subpopulations: discordant and concordant. The discordant group
included cases in which the visual rating disagreed with one or
more of the meta-ROI classifications, whereas the concordant
group included cases in which both methods agreed (Fig. 3).
THETA’s formulation accurately reflected the heterogeneous

contributions of all regions in the discordant cases having mild
signals and similar regional contributions. In this group, the input
contributions were distributed among different regions rather than
being focused specifically on the meta-ROIs (Supplemental Figs.
2 and 4). In the tau-positive concordant cases, our ML model’s
hot-spot regions were the top predictors that constituted the meta-
ROIs. In these cases, THETA maintained the importance of top
regions, preserving spatial heterogeneity.

TABLE 2
Models Trained on Mayo and Validated on ADNI and OASIS-3

Dataset MCC Balanced accuracy F1 score Precision Recall

Mayo training (80%) 90.68 (3.71) 94.87 (2.51) 92.20 (3.14) 96.36 (2.53) 88.52 (4.87)

Mayo testing (20%) 87.68 (3.43) 92.49 (1.99) 90.00 (2.44) 93.88 (3.60) 86.45 (4.20)

ADNI testing 78.68 (1.69) 86.25 (1.36) 83.05 (1.60) 94.56 (2.63) 74.18 (3.28)

OASIS-3 testing 73.57 (2.87) 82.48 (1.95) 75.79 (2.64) 88.81 (5.19) 66.40 (4.25)

MCC 5 Matthew correlation coefficient.
Data are mean and SD.

TABLE 3
Comparison of Meta-ROIs and ML Model

Tau-positivity
comparison

True-positive
rate (%)

True-negative
rate (%)

True-positive
(n)

True-negative
(n)

1 2 true-positive
rate (%)

1 2 true-negative
rate (%)

Mayo

Visual vs. temporal 0.93 0.76 227 796 7.34 23.83

Visual vs. MTL 0.78 0.95 191 993 22.04 4.97

Visual vs. neocortical 0.76 0.98 185 1,028 24.49 1.63

Visual vs. model 0.96 1.00 236 1,040 3.67 0.48

ADNI

Visual vs. temporal 0.93 0.66 214 397 6.96 33.94

Visual vs. MTL 0.78 0.88 180 526 21.74 12.48

Visual vs. neocortical 0.70 0.96 161 579 30.00 3.66

Visual vs. model 0.78 0.98 179 587 22.17 2.33

OASIS-3

Visual vs. temporal 0.82 0.70 50 260 18.03 29.54

Visual vs. MTL 0.66 0.89 40 329 34.43 10.84

Visual vs. neocortical 0.66 0.95 40 352 34.43 4.61

Visual vs. model 0.75 0.98 46 364 24.59 1.36
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Association of THETA with Clinical Disease Severity Markers.
THETA correlated with the Mini-Mental State Examination signif-
icantly better than all meta-ROIs for the Mayo dataset based on
the Choi nonparametric test of Spearman correlations (THETA
r 5 20.45, meta-ROIs r $ 20.36, Choi P , 0.05) (Fig. 4). For
the ADNI dataset, the correlation of THETA with the Mini-Mental
State Examination was significantly better than the neocortical and
temporal meta-ROIs (THETA r 5 20.37, neocortical and temporal
r 5 20.31, P , 0.05). THETA did not significantly correlate with
the Clinical Dementia Rating–Sum of Boxes compared with the meta-
ROIs in the Mayo and OASIS-3 datasets but correlated significantly
with the neocortical and temporal meta-ROIs in ADNI (THETA
r 5 0.46, meta-ROIs r $ 0.36, Choi P , 0.05). A similar pattern
of association with clinical indices was also observed in Mayo-
concordant groups. However, in Mayo-discordant groups, THETA
demonstrated a significantly negative correlation with the Mini-Mental
State Examination (THETA r 5 20.43, meta-ROIs r $ 20.07,
Choi P, 0.05) and a significantly positive correlation with the Clin-
ical Dementia Rating–Sum of Boxes (THETA r 5 0.37, meta-ROIs
r 5 0.05, Chois P, 0.05) compared with the meta-ROIs (Fig. 5).
Separation of Tau-Positive from Tau-Negative Scans. THETA

provided greater separation between visually tau-positive and
-negative cases, a characteristic attributed to its development from a
model trained on the binary visual ratings; however, the meta-ROIs
did not provide greater separation either according to visual classifi-
cations or according to their respective cut points (Fig. 4).
When THETA was compared with the temporal meta-ROI across

various clinical diagnostic outcomes, the separation between tau-
positive and tau-negative cases was similar
for AD dementia cases. However, for CU
and MCI, there was an overlap in tau status
for the temporal meta-ROI, whereas THETA
showed better separation between cases
(Fig. 6). For instance, in ADNI, the differ-
ence between tau-positive and tau-negative
temporal meta-ROI values for CU and
MCI participants had an effect size of 3.08
(t 5 16.50, P, 0.001) and 2.23 (t 5 16.76,
P , 0.001), respectively. THETA showed
a larger effect size of 10.09 (t 5 54.09,
P , 0.001) and 6.83 (t5 51.36, P, 0.001),
respectively (Fig. 6).
Association of THETA with Braak Stag-

ing. Mayo participants with Braak staging
(I–VI) (n 5 90) were included for histo-
pathologic validation of THETA (Supple-
mental Table 3). The association of THETA
with Braak staging was similar to the meta-
ROIs (r 5 0.87 for THETA, P , 0.05 vs.
P # 0.83; P , 0.05 for meta-ROIs). How-
ever, improved separation of clinical diag-
nostic groups was observed in THETA
compared with the meta-ROIs (Fig. 7).

DISCUSSION

Tau pathology, as captured by tau PET
scans, is a key indicator of disease severity
in AD (17). Current tau PET quantitative
techniques have limitations in addressing
the heterogeneity of tau deposition because

FIGURE 3. Examples of concordant groups (with agreement between
visual rating and meta-ROIs) (A and B) and discordant groups (C and D).
Although meta-ROIs can miss visually positive scans in which SUVR is
lower than cut point (C), visual assessment does not consider isolated
increased activity in MTL (D). Arrows indicate increased tracer uptake.
Ab 5 b-amyloid.

FIGURE 4. Comparison of meta-ROIs and THETA to clinical measures (Mini-Mental State Exami-
nation [MMSE] and Clinical Dementia Rating–Sum of Boxes [CDR-SB]). Tau negativity (T-) and tau
positivity (T1) are visual assessments, and meta-ROI cut points are shown by dotted vertical lines.
OASIS-3 results are shown in Supplemental Figure 6.
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they focus on regions with typically high
tau uptake while ignoring the spatial vari-
ance of tau burden. Using visual assess-
ment by 3 raters as the gold standard in a
large single-site dataset (Mayo), we devel-
oped an ML model to accurately classify
tau PET scans. We then validated our
model in 2 independent datasets (ADNI
and OASIS-3) and developed a summary
metric, THETA, to consider tau SUVRs
across the entire brain and map well to dis-
ease progression. The clinical validations
showed that THETA was better associated
with indicators of cognitive impairment,
provided a greater magnitude of separation
between clinical diagnosis groups, and was
better associated with AD pathology-based
staging than are meta-ROIs.
The FDA approved 18F-flortaucipir for

detecting neurofibrillary tangles at Braak
stages V and VI (8). Effective quantifica-
tion of tau PET has paramount importance
as it leads to more sensitive assessments of
disease severity. Given that visual evaluation
is a clinically accepted practice, a model
incorporating multirater assessment as a gold
standard can be sensitive in identifying posi-
tive scans. Moreover, using such a model to
develop a summary metric can be beneficial.
Our work takes advantage of this model to
accurately quantify tau PET scans using
regional SUVRs to address heterogeneous
tau deposition across the entire brain.
Our results show that THETA mapped

onto clinical diagnostic and cognitive indi-
ces comparably to or better than meta-ROIs while retaining pattern-
based information. This was further examined by inspecting the
feature importance of participants with neocortical versus MTL tau
positivity. For participants with neocortically dominant tau positivity,

FIGURE 5. Comparison of meta-ROIs and THETA to clinical measures (Mini-Mental State Examina-
tion [MMSE] and Clinical Dementia Rating–Sum of Boxes [CDR-SB]) for discordant and concordant
Mayo groups. Discordant groups showed disagreement between visual rating and meta-ROIs, whereas
concordant groups showed agreement between visual and meta-ROI methods. Tau negativity (T-) and
tau positivity (T1) are visual assessments, and meta-ROI cut points are shown by dotted vertical lines.

FIGURE 6. Comparison of temporal meta-ROI and THETA in diagnostic
groups (CU, MCI, and AD dementia). Tau negativity (T-) and tau positivity
(T1) are based on visual assessment. ns5 not statistically significant.

FIGURE 7. Association of meta-ROIs and THETA to Braak stages. Cut
points are shown by dotted lines. NEO5 neocortex.
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the inferior temporal cortex was the top predictor, whereas in partici-
pants with MTL tau positivity—a region notably affected by tau
deposition—the entorhinal cortex was a key predictor (Supplemental
Fig. 4). Furthermore, THETA demonstrated a clearer separation of
clinical diagnoses at higher Braak stages (V and VI) better than
the meta-ROIs. Given that a higher Braak stage is not always
associated with cognitive decline, particularly in resilient groups
(16), THETA effectively filtered out higher Braak (V) tau-
negative CU participants, indicating its utility to quantify tau
burden and better associate with clinical diagnosis (Fig. 7).
Nonetheless, the histopathology sample used here was small, and
further studies are needed to investigate the utility of THETA in
identifying resilient and resistant groups.
Meta-ROIs and visual ratings have different approaches to

measuring tau pathology. Meta-ROIs focus on the entorhinal
cortex, which can overestimate tau positivity, whereas visual
assessments can miss isolated tau in the MTL and anterolateral
temporal lobe (18). Visual assessments offer the possibility of
assessing tau burden throughout the brain and can be superior
because the meta-ROIs rely on specific regions. Nonetheless, we
found in our Mayo cohort that all 3 meta-ROIs underperformed
in the visual identification of tau-positive cases. The neocortical
meta-ROI’s true negative rate was consistent across all 3 data-
sets, whereas the MTL did better in the identification of true
negatives in Mayo and decreased in performance in ADNI and
OASIS-3.
This study had some strengths and limitations. A strength is that

both the ML model and THETA were validated on 2 independent
datasets. A limitation is that visual assessment was FDA-approved
specifically for moderate to higher levels of tau. Although this
method ensures exclusion of off-target binding, the trained model
could be less sensitive to early tau changes. Further studies are
needed to assess the effectiveness of THETA to identify early tau
changes. Another limitation is that the model’s performance was
lower for the ADNI and OASIS-3 validation sets because of
cohort differences. However, combining them and training a new
model achieved a balanced accuracy of more than 94% and
an AUC of more than 0.99 (Supplemental Table 4; Supplemental
Fig. 5). Finally, THETA exhibits sensitivity for visual tau posi-
tives, which can be a strength or a limitation. A longitudinal sensi-
tivity analysis found no significant difference in performance from
meta-ROIs (Supplemental Fig. 6). Lastly, changing the cut points
for meta-ROIs could change the results presented for the meta-
ROIs.

CONCLUSION

We were able to develop an ML model to predict tau status on
single-site data and validate it on external datasets. We also devel-
oped a tau summary measure, THETA, which captured the spatial
heterogeneity of tau and showed higher sensitivity to clinical dis-
ease severity. Overall, this study provided promising results for
using ML to improve the detection and quantification of tau
pathology in AD.
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KEY POINTS

QUESTIONS: Can an ML model trained using visual ratings
identify positive tau PET scans and aid in developing a summary
metric that considers spatial heterogeneity?

PERTINENT FINDINGS: Our model, trained on a single-site cohort,
was accurate in classifying tau-positive status and was able to
generalize well to external cohorts. The summary metric THETA was
able to associate with clinical cognitive markers, clinical diagnoses,
and histopathology comparably to or better than meta-ROIs.

IMPLICATIONS FOR PATIENT CARE: Our model and THETA
can enhance information extracted from tau PET for improved
clinical diagnoses, disease progression tracking, AD subtyping,
and identification of therapeutic targets, for better personalized
and effective patient care.
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