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In lung cancer patients, radiotherapy is associated with a increased
risk of local relapse (LR) when compared with surgery but with a
preferable toxicity profile. The KEAP1/NFE2L2 mutational status
(Mutkeap1/nFeE2L2) IS Significantly correlated with LR in patients treated
with radiotherapy but is rarely available. Prediction of Mutkeap1/nFe2L2
with noninvasive modalities could help to further personalize each
therapeutic strategy. Methods: Based on a public cohort of 770
patients, model RNA (M-RNA) was first developed using continuous
gene expression levels to predict Mutkeap1/nFe2L2, FESUItING in a binary
output. The model PET/CT (M-PET/CT) was then built to predict
M-RNA binary output using PET/CT-extracted radiomics features.
M-PET/CT was validated on an external cohort of 151 patients treated
with curative volumetric modulated arc radiotherapy. Each model was
built, internally validated, and evaluated on a separate cohort using
a multilayer perceptron network approach. Results: The M-RNA
resulted in a C statistic of 0.82 in the testing cohort. With a training
cohort of 101 patients, the retained M-PET/CT resulted in an area
under the curve of 0.90 (P < 0.001). With a probability threshold of
20% applied to the testing cohort, M-PET/CT achieved a C statistic of
0.7. The same radiomics model was validated on the volumetric mod-
ulated arc radiotherapy cohort as patients were significantly stratified
on the basis of their risk of LR with a hazard ratio of 2.61 (P = 0.02).
Conclusion: Our approach enables the prediction of Mutkgap1/nFe2L2
using PET/CT-extracted radiomics features and efficiently classifies
patients at risk of LR in an external cohort treated with radiotherapy.
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Radiotherapy is a major treatment option for localized lung
cancer (/). Depending on the clinical setting, radiotherapy can be
delivered alone or in combination with systemic treatments such
as chemotherapy, immunotherapy, or other drugs (I). Fraction-
ation and dose prescription are tailored for each patient depending
on the histology and the tumor stage. For patients with locally
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advanced non—small cell lung cancer (NSCLC) who cannot undergo
surgery, chemoradiotherapy followed by durvalumab is the preferred
option (2,3). For patients with stage I NSCLC, stereotactic radiother-
apy challenges surgery as the upfront treatment (4—6). Radiotherapy
requires an extensive staging with '3F-FDG PET/CT (7). Local
relapse (LR) rates slightly differ after the 2 treatment options, with a
higher LR rate in patients treated with radiotherapy than in those
treated with surgery (8). The KEAP1/NFE2L2 pathway regulates the
response to radiotherapy with several involvements in the oxidative
cascade (9—12). Patients who harbored a mutation in the KEAPI or
NFE2L2 gene are more likely to present a postradiotherapy LR than
patients who are mutation-naive (/3,/4). Establishing the muta-
tional status could thus have a substantial therapeutic impact, with
some patients being possibly recommended for surgery rather than
radiotherapy when a mutation is found. When surgery is not feasi-
ble, dose escalation or radiosensitization through systemic agents
could be an option. Results could even be extrapolated to patients
treated with immunotherapy or chemotherapy, as KEAP1/NFE2L.2
mutations are also associated with response to systemic treatments
(15,16).

KEAP1/NFE2L2 mutations are not part of the usual tested biomark-
ers for lung cancer. Noninvasive assessment of the KEAP1/NFE2L.2
mutational status (Mutggapinrezro) could have the same impact as
genetic sequencing but with added advantages such as early diagnosis,
decreased costs, and eventual longitudinal monitoring for a more
accurate follow-up.

Radiomics features are statistical, geometric, or textural metrics
designed to provide quantitative measurements of intensity, shape,
or heterogeneity of a given volume of interest in medical images
and have been a great field of interest for several years. Radiomics
are thought to noninvasively apprehend intratumoral heterogeneity
and fully characterize a tumor and were previously used for the
prediction of biomarkers such as a mutation in the epidermal
growth factor (/7). To our knowledge, it was never used for the
prediction of KEAP1/NFE2L2 mutations.

The aim of this study was to develop and externally validate a
PET/CT-based radiomics model for the prediction of Mutkgapi/NpE2L2-

MATERIALS AND METHODS

Population

Our goal was to develop a prediction model for Mutkgapi/NFE2L2
using only PET/CT features. Of the 1,374 available patients in the
cohorts of The Cancer Genome Atlas—Lung Squamous Cell Carcinoma
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(18) (n = 522), The Cancer Genome Atlas—Lung Adenocarcinoma (/9)
(n = 504), Clinical Proteomic Tumor Analysis Consortium-Lung
Squamous Cell Carcinoma (20) (n = 108), Clinical Proteomic Tumor
Analysis Consortium—Lung Adenocarcinoma (2/) (n = 110), and
NSCLC-Radiogenomics (22) (n = 130), Mutggapi/NFe2L2 Was known
for 770 patients, of which only 41 had an available PET/CT image.
Because of the low number of cases, direct prediction of the mutational
status using PET/CT features was deemed not feasible and prone to
overfitting. Transcriptomics via sequencing of the RNA could give an
insight on Mutggapi/nFeaL2, With 33 genes being upregulated in the
case of Mutggapi/nre2L2 (23) and thus leading to highly activated meta-
bolic pathways such as glutathione metabolism. Genomics (exome
sequencing data) and transcriptomics data were thus available for 770
patients (cohort 1), whereas transcriptomics (Illumina HiSeq platform)
and PET/CT data were available for 158 patients (cohort 2).

A 3-step approach was proposed. First, using cohort 1, the first
model RNA (M-RNA) using continuous gene expression levels was
developed to predict Mutggapi/nrer2. Gene expression levels were
normalized as reads per kilobase million. The outputs of the M-RNA
were continuous-probability M-RNA and binary-outcome M-RNA (M-
RNA-B). Second, another model (model PET/CT [M-PET/CT]) using
radiomics data was built with a focus on cohort 2 for the prediction of
M-RNA-B. The outputs of the M-PET/CT were thus M-PET/CT-C as
a continuous probability and M-PET/CT-B as a binary output. Third, in
the final step, 2 cohorts were used for clinical validation, testing the
impact of M-PET/CT-B on LR-free survival (LRFS). Crude incidence
rates were used. Survival analysis was based on a Kaplan—Meier curve
using 2 cohorts: the NSCLC-Radiogenomics cohort, with 123 patients
being analyzable (available clinical data and PET/CT), and an external
cohort of 151 patients (cohort 3; NCT04545658 and NCT03931356)
(24,25) treated with curative volumetric modulated arc radiotherapy.

The institutional review board of the University Hospital of Brest
approved this retrospective study, and all subjects received a nonopposi-
tion form. The research was performed in accordance with the declaration
of Helsinki. The section below (Model Building) shows the dichotomiza-
tion of the continuous-probability M-RNA outputs to M-RNA-B ones.

Figure 1 provides a flowchart summarizing the different statistical
steps, and a second flowchart explaining the patients’ selection is pre-
sented in Supplemental Figure 1 (supplemental materials are available
at http://jnm.snmjournals.org).

As an additional statistical validation, direct prediction of
Mutggapi/nrearz Using M-PET/CT-C was also assessed in the 41
patients for whom both mutational status and PET/CT were available.

Model Building

Each model was built, internally validated, and evaluated on a sepa-
rate cohort using a multilayer perceptron network approach, as previ-
ously reported (24,26). In-depth explanations regarding the model
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FIGURE 1. Flowchart summarizing different statistical steps. M-RNA-C =
continuous-probability M-RNA; VMAT = volumetric modulated arc
radiotherapy.

building are available as Supplemental Protocol 1 (/8-25,27-29).
Briefly, transcriptomics or radiomics features were first selected using
the Mann—Whitney test. Only statistically different features about the
Mutggapinrear2 (step 1) or the M-RNA-B (step 2) were retained.
Correlation between the retained features was then assessed with the
Spearman correlation coefficient, keeping only the most significant
feature in the case of a Spearman coefficient greater than 0.7. Selected
features were then combined using a decremental neural network
approach based on each feature’s ranking, with the ranking being set
by the importance of the feature in the proposed model. For each
model, the least important feature is put apart and the remaining fea-
tures are provided for the development of the next model. The chosen
model was the one maximizing the mean accuracy based on 1,000
replications of bootstrapping.

For the development of the M-RNA, cohort 1 was randomly split
into 3 independent sets: training (50%, 381/770), validation (20%,
159/770), and testing (30%, 230/770). For the development of the M-
PET/CT, cohort 2 was randomly split into a training set (~60%, n =
151) and a testing set (~40%, n = 57). Each model was associated
with a probability cutoff based on the Youden index, thus classifying
patients at high or low risk of mutation. For the M-RNA, the probabil-
ity threshold was defined using the validation cohort, resulting in M-
RNA-B. For the M-PET/CT, the probability threshold was determined
on the training set, resulting in M-PET/CT-B.

Both models were evaluated on the testing and validation cohorts
using receiver-operating characteristics such as the area under the
curve (AUC), sensitivity, specificity, interrater agreement statistic (k),
balanced accuracy (BACC), and F1 score. Negative and positive pre-
dictive values were calculated. Decision curves were also used for the
models’ evaluation. The impact of the probability threshold was
assessed by changing its value and observing the shifts in sensitivity,
specificity, negative predictive values, positive predictive values, and
k for the M-PET/CT. The research was performed in accordance with
the Standards for Reporting of Diagnostic Accuracy guidelines.

RESULTS

Prediction of Mutkgap1/nFe2L2 USing Transcriptomics Data

A mutation of either KEAP1 or NFE2L2 was found in 175 of 770
patients (22.7%). The best M-RNA reached a mean accuracy of
91.6% in the training cohort (Supplemental Fig. 2). When 9 transcrip-
tomics features were combined (CBR1, G6PD, GCLM, NQO1, PGD,
SRXNI1, TRIM16, TXNRD1, and UGDH), the M-RNA reached an
AUC of 0.99 (P < 0.001). The importance of each transcriptomics
feature in the M-RNA is shown in Supplemental Table 1.

In the training set and with a 15% probability cutoff, the
M-RNA resulted in a BACC of 96.8%, a sensitivity of 96.3%, a
specificity of 97.3%, and a k of 0.90. With the same probability
threshold, the BACC was 78.8% and 81.9% in the validation and
testing cohorts, respectively.

The receiver-operating-characteristic curves for each cohort are
available in Figures 2A and 2C, and the results according to the
cohort are detailed in Table 1.

Decision curve analysis showed the efficiency of the M-RNA,
especially for higher predicted probabilities mainly in the testing
cohort (Supplemental Figs. 3A-3C).

Prediction of M-RNA-B Using Radiomics Features

On the basis of the 101 patients from the training cohort, only 5
features harbored a significant differential distribution between
the 2 M-RNA-B groups: 4 features extracted from PET and 1
extracted from CT (Supplemental Table 2). Selected radiomics
features harbored a significant correlation with 7 of 9 retained
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FIGURE 2. Prediction of MUTkeap1/nFE2L2 USING continuous-probability
M-RNA (receiver-operating-characteristic curve) in training cohort (A), vali-
dation cohort (B), and testing cohort (C).

transcriptomics features as shown in Supplemental Table 3. A posi-
tive M-RNA-B status was seen for 29.7% and 17.5% (P = 0.09) of
the training and testing cohorts, respectively (Supplemental Table 4).

In the training cohort, the M-PET/CT combined the 5 previ-
ously presented radiomics features, resulting in a mean accuracy
of 74.1%. The most important feature was the Wavelet-
HLH_glem_MaximumProbability, with an importance of 82.0%.
In the training cohort, M-PET/CT-C achieved an AUC of 0.90
(P < 0.001). When the 20% probability threshold maximizing the
Youden index was applied, M-PET/CT-B resulted in a BACC of
80.4%, a sensitivity of 83.3%, a specificity of 77.5%, and a k of 0.55.
On the testing cohort, M-PET/CT decreased to an AUC of 0.71
(P = 0.02), a k of 0.34, a BACC of 70.5%, a sensitivity of 60%, and
a specificity of 80.9%. In the training and testing cohorts, respectively,
M-PET/CT-B resulted in negative predictive values of 91.7% and
90.5% and positive predictive values of 61.0% and 40.0% (Table 2).

The receiver-operating-characteristic curves for each cohort
(training and testing cohorts) are available in Figures 3A and 3B,
and the mean accuracy for M-PET/CT is presented as Supplemen-
tal Figure 4.

In the testing cohort, analysis of the decision curve for M-PET/
CT-C showed a positive net clinical benefit for probabilities rang-
ing between 0% and 33% (Supplemental Fig. 5).

Prediction of Mutkeap1/nFe2L2 USing M-PET/CT-C

An exploratory analysis regarding the prediction of Mutxgapi/NFE212
using M-PET/CT-C was performed. For the 26 patients included in the
training cohort, M-PET/CT-C reached an AUC of 0.71 (P = 0.06),
whereas the AUC changed to 0.80 for the 15 patients in the testing
cohort.

Impact on LRFS

Prediction of LRFS in NSCLC-Operated Patients Using
M-PET/CT-B. With a median follow-up of 58.8mo (95% CI,
43.4-64.6 mo), the LR rate was as low as 4.6% (6 of 123 patients

from the NSCLC-Radiogenomics cohort). No significant differ-
ence was found according to the M-PET/CT-B as shown in
Figure 4A.

Prediction of LRFS in NSCLC Patients Treated with Curative
Radiotherapy Using M-PET/CT-B. In a retrospective cohort of
151 patients with a median follow-up of 28.9 mo (95% CI, 21.1-
35.1mo), LR occurred in 15.1% of the patients. M-PET/CT-B sig-
nificantly stratified patients regarding their risk of LR, with a haz-
ard ratio of 2.61 (95% CI, 1.07-6.40; P = 0.02) with a LR rate of
15.1% as shown in Figure 4B.

DISCUSSION

To our knowledge, this study is the first to focus on the predic-
tion of the KEAP1/NFE2L2 mutation. Not being available in the
clinical practice because of its cost and novelty, noninvasive pre-
diction could have a significant therapeutic impact given the
shorter LRFS in patients harboring such mutations. When 5
PET/CT radiomics features were combined, the M-PET/CT was
predictive of LRFS in an external cohort of 151 patients treated
with radiotherapy.

The KEAP1/NFE2L2 molecular pathway is of growing interest
given recent data, making it a potential biomarker of radioresis-
tance (/4). Our model could have a substantial impact on the treat-
ment of NSCLC. With a negative predictive value of 90.5%,
patients with a M-PET/CT-C of 20% or less could thus continue
with their radiotherapy plan, whereas patients with a M-PET/CT-
C of more than 20% could be proposed for either tumor RNA or
genome sequencing. In the testing cohort alone, this would avoid
such genetic tests for 73.7% (42/57) of the testing cohort. In the
overall cohort, the M-PET/CT would avoid unnecessary genetic
testing for 64.6% of the cohort, with the risk of only 9 false-
negative patients (5.7%). The BACC decreased in the testing set,
especially with a lower sensitivity. Apart from the performance of
the M-PET/CT itself, this can partly be explained by the lower
rate of M-RNA-B—positive patients in the testing set.

In the case of a proven mutation affecting the KEAP1/NFE2L2
pathway, management remains unclear to this day. Operable
patients could be referred to a thoracic surgeon. However, a signif-
icant number of patients are probably not suitable for surgery. For
this subset of patients, dose escalation or treatment combination
could be proposed. Use of radiosensitization agents such as gluta-
minase inhibitors could lower the risk of LR (73,14).

The second major finding in our work is the significant stratifi-
cation allowed by M-PET/CT-C regarding the LR risk in patients
treated with radiotherapy. Patients with a M-PET/CT-C greater
than 20% were 2.6 times more likely to present with LR in an

TABLE 1
Prediction of MUTkgap1/nFe2L2 Using Continuous-Probability M-RNA
Probability Mean AUC_
threshold Partition accuracy” RecallCurve F1 score AUC K SE SP BACC
>15% Training 91.6% 0.97 0.96 0.99 0.90 96.3% 97.3% 96.8%
Validation 0.69 0.71 0.87 0.32 64.5% 93.0% 78.8%
Testing 0.87 0.87 0.93 0.49 70.3% 93.4% 81.9%

*Based on 1,000 bootstrap replications.
SE = sensitivity; SP = specificity.
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TABLE 2
Receiver-Operating Characteristics of M-RNA-B Using M-PET/CT-C in Each Cohort

Testing cohort (n = 57 patients)

Training cohort (n = 101 patients)

Patients above

Patients under

Patients above
the threshold

Patients under

the threshold

the threshold

ROC results

the threshold

ROC results

No
M-RNA-B M-RNA-B  M-RNA-B¥

No

F1
BACC score M-RNA-BT

No

M-RNA-B M-RNA-B

No

F1
BACC score M-RNA-BT

Mean
accuracy*

Probability
threshold

M-RNA-B¥

SP

SE

K

SE SP

K

9 (22.5%)

31 (77.5%)

©4.1%) 1 (5.9%)
0.48 38 (90.5%) 4 (9.5%)

16

0.36

62.0%
70.5%

34.0%
80.9%

0.11 90.0%
0.34 60.0%

43 (58.9%) 30 (41.1%)

0 (0.0%)
5 (8.3%)
17 (19.3%)
17 (19.3%)
17 (19.3%)

0.58 28 (100.0%)
0.70 55 (91.7%)

69.7%
80.4%
71.7%
71.7%
71.7%

39.4%
77.5%
100%
100%
100%

0.28 100%
0.55 83.3%
0.52 43.3%
0.52 43.3%
0.52 43.3%

74.1%

>10%
>20%

9 (60.0%) 6 (40.0%)

4 (66.7%)

16 (39.0%) 25 (61.0%)

2 (33.3%)
2 (33.3%)

2 (33.3%)

0.30 43 (84.3%) 8 (15.7%)
0.30 43 (84.3%) 8 (15.7%)
0.30 43 (84.3%) 8 (15.7%)

13 (100.0%) 0.14 20.0% 91.5% 55.8%
13 (100.0%) 0.14 20.0% 91.5% 55.8%

13 (100.0%) 0.14 20.0% 91.5% 55.8%

0 (0.0%)
0 (0.0%)
0 (0.0%)

71 (80.7%)
71 (80.7%)
71 (80.7%)

0.61
0.61
0.61

>30%
>40%
>50%

4 (66.7%)

4 (66.7%)

*Based on 1,000 Bootstrap replications.

TNegative predictive value in parentheses.

*Positive predictive value in parentheses.
SE = sensitivity; SP = specificity.

Bold data indicate probability thresholds.
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FIGURE 3. Prediction of M-RNA-B using M-PET/CT-C (receiver-operat-
ing-characteristic curve): M-PET/CT-C in training cohort (A) and in testing
cohort (B).

external cohort. These data highlighted the strength of radioge-
nomics and opened the possibility of imputing our model in LR
prediction modeling and possibly not using the M-RNA. As
expected, results were not significant in the radiogenomics
cohort. Response to treatment is known to be independent from
Mutggapi/NFE2L2 1N patients who had surgery (14).

Certain limitations could not be overcome. Prediction of the
Mutkeapi/NFE2L2 Tather than a surrogate would probably limit the
complexity of our approach. Nevertheless, the AUC of 0.80
for the prediction of MutKEApl/NFEZLz using M-PET/CT-C in the
testing cohort demonstrates the potential of our approach. The
M-PET/CT was trained and validated in patients among several
cohorts. The semiautomatic segmentation ensures robustness and
low intervariability. The neuroCombat harmonization method
(28,29) limits the heterogeneity associated with multicentric data
without compromising interpatient variability. Although the exter-
nal validity of such a model is probably enhanced, the testing
cohort for M-PET/CT-B cannot be seen as an external validation.
Having a real external validation remains necessary, especially
given the possible instability of wavelet-based features (30).
Finally, the pathogenicity of Mutggapi/NFE2L2 Was not evaluable,
thus limiting the explainability of M-PET/CT. Maximum probabil-
ity is a radiomics feature extracted on the gray level cooccurrence
matrix. It represents the number of occurrences of the most pre-
dominant pair of neighboring intensity values. Although a signifi-
cant correlation was found between the selected radiomics features
including the maximum probability and most transcriptomics fea-
tures, the positive correlation between the maximum probability
and M-PET/CT-B indicates that the probability of mutation is
associated with the '8F-FDG heterogeneity uptake. Despite these
limitations, M-PET/CT-B significantly stratified patients treated
with radiotherapy in an external cohort.
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FIGURE 4. Prediction of LRFS in NSCLC-Radiogenomics (A) and volu-
metric modulated arc radiotherapy (B) cohorts using M-PET/CT-B.
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CONCLUSION

Using a hybrid approach, a model combining PET/CT-extracted

radiomics features was able to predict the Mutggapi/nFr2r2 a8 Well
as the risk of LR after radiotherapy. This model appears to be gen-
eralizable without any added costs or sequencing delays and could
be used in the selection of patients for genetic testing and LR pre-
diction modeling. It could thus have a significant impact in helping
clinicians select thoracic radiotherapy or surgery for their patients.
External validation of this model is currently under investigation,
opening the field to new treatment strategies.
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KEY POINTS

QUESTION: Can a PET/CT-based radiomics model predict the
Mutkeap1/nFe2L2 @nd thus LRFS after thoracic radiotherapy?

PERTINENT FINDINGS: In this innovative research article, a
transcriptomics signature was developed and internally validated
using a cohort of 770 NSCLC patients. A radiomics-based
M-PET/CT was able to predict the transcriptomics signature.
This radiomics signature was validated on an external cohort of
151 patients treated with radiotherapy, in which patients at high
risk of relapse as calculated by the radiomics signature were

2.6 times more likely to present with LR.

IMPLICATIONS FOR PATIENT CARE: This model appears to be
generalizable without any added costs or sequencing delay and
could be used for the selection of patients for genetic testing and
LR prediction modeling. This model is accessible for external use
and validation on request.
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