Diagnostic Accuracy of ⁶⁸Ga-FAPI Versus ¹⁸F-FDG PET in Patients with Various Malignancies

Nader Hirmas¹, Rainer Hamacher², Miriam Sraieb¹, Lukas Kessler¹, Kim M. Pabst¹, Francesco Barbato¹, Helena Lanzafame¹, Stefan Kasper², Michael Nader¹, Claudia Kesch³, Bastian von Tresckow⁴, Hubertus Hautzel¹, Clemens Aigner⁵, Martin Glas⁶, Martin Stuschke⁷, Sherko Kümmel^{8,9}, Philipp Harter¹⁰, Celine Lugnier¹¹, Waldemar Uhl¹², Boris Hadaschik³, Viktor Grünwald³, Jens T. Siveke^{13,14}, Ken Herrmann¹, and Wolfgang P. Fendler¹

¹Department of Nuclear Medicine, German Cancer Consortium–University Hospital Essen, University of Duisburg–Essen, Essen, Germany; ²Department of Medical Oncology, West German Cancer Center, German Cancer Consortium–University Hospital Essen, University of Duisburg–Essen, Essen, Germany; ³Department of Urology, German Cancer Consortium–University Hospital Essen, University of Duisburg–Essen, Essen, Germany; ⁴Department of Hematology and Stem Cell Transplantation, West German Cancer Center, German Cancer Consortium–University Hospital Essen, University of Duisburg–Essen, Essen, Germany; ⁵Department of Thoracic Surgery and Thoracic Endoscopy, German Cancer Consortium–University Hospital Essen, Essen, Germany; ⁶Division of Clinical Neurooncology, Department of Neurology, German Cancer Consortium–University Hospital Essen, University of Duisburg–Essen, Essen, Germany; ⁷Department of Radiation Therapy, German Cancer Consortium–University Hospital Essen, University of Duisburg–Essen, Essen, Germany; ⁸Breast Unit, Kliniken Essen–Mitte, Essen, Germany; ⁹Department of Gynecology with Breast Center, Charité–Universitätsmedizin Berlin, Berlin, Germany; ¹⁰Department of Gynecology and Gynecologic Oncology, Evangelische Kliniken Essen-Mitte, Essen, Germany; ¹¹Department of Hematology and Oncology with Palliative Care, Ruhr University Bochum, Bochum, Germany; ¹²Department of General and Visceral Surgery, Ruhr University Bochum, Bochum, Germany; and ¹⁴Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK partner site Essen), German Cancer Research Center, Heidelberg, Germany

To assess the diagnostic accuracy of ⁶⁸Ga-labeled fibroblast activation protein inhibitor (FAPI) and ¹⁸F-labeled FDG PET for the detection of various tumors, we performed a head-to-head comparison of both imaging modalities across a range of tumor entities as part of our ongoing ⁶⁸Ga-FAPI PET observational trial. Methods: The study included 115 patients with 8 tumor entities who received imaging with ⁶⁸Ga-FAPI for tumor staging or restaging between October 2018 and March 2022. Of those, 103 patients received concomitant imaging with ⁶⁸Ga-FAPI and ¹⁸F-FDG PET and had adequate lesion validation for accuracy analysis. Each scan was evaluated for the detection of primary tumor, lymph nodes, and visceral and bone metastases. True or false positivity and negativity to detected lesions was assigned on the basis of histopathology from biopsies or surgical excision, as well as imaging validation. Results: ⁶⁸Ga-FAPI PET revealed higher accuracy than ¹⁸F-FDG PET in the detection of colorectal cancer (n = 14; per-patient, 85.7% vs. 78.6%; per-region, 95.6% vs. 91.1%) and prostate cancer (n = 22; per-patient, 100% vs. 90.9%; per-region, 96.4% vs. 92.7%). ⁶⁸Ga-FAPI PET and ¹⁸F-FDG PET had comparable per-patient accuracy in detecting breast cancer (n = 16, 100% for both) and head and neck cancers (n = 10, 90% for both modalities). ⁶⁸Ga-FAPI PET had lower per-patient accuracy than ¹⁸F-FDG PET in cancers of the bladder (n = 12, 75% vs. 100%) and kidney (n = 10,80% vs. 90%), as well as lymphoma (n = 9, 88.9% vs. 100%) and myeloma (n = 10, 80% vs. 90%). Conclusion: ⁶⁸Ga-FAPI PET demonstrated higher diagnostic accuracy than ¹⁸F-FDG PET in the diagnosis of colorectal cancer and prostate cancer, as well as comparable diagnostic performance for cancers of the breast and head and neck.

Accuracy and impact on management will be further assessed in an ongoing prospective interventional trial (NCT05160051).

Key Words: FAPI; FDG; PET; oncology; theranostic; accuracy

J Nucl Med 2024; 00:1–7 DOI: 10.2967/jnumed.123.266652

maging is fundamental in the treatment of malignancies, with varying detection rates depending on the tumor entity and diagnostic modality. PET of cancer cells using ¹⁸F-FDG PET acquires additional molecular information useful for the detection of disease recurrence and metastases, response assessment, disease management, and prognostication (1-6). However, drawbacks of ¹⁸F-FDG include false-positive findings due to physiologic uptake or inflammatory responses, as well as false-negative findings due to elevated serum blood glucose levels. As such, targeting of cancer cells using alternative radioisotopes has been an area of growing interest.

Cancer-associated fibroblasts, a constituent of the tumor microenvironment, are involved in tumor growth, migration, and progression (7). Fibroblast activation protein (FAP) α is expressed by cancer-associated fibroblasts, a marker associated with protumorigenic functions (8–12) and, therefore, a suitable target for diagnostic and therapeutic purposes. Multiple preclinical and clinical studies have shown the promise of FAP-directed therapies, including radiolabeled FAP inhibitors (FAPIs), which exhibit favorable properties in cancer diagnosis and therapy (13–18). These properties include, but are not limited to, fast imaging times, high contrast in tumor lesions, and no dietary requirements with regard to

Received Sep. 8, 2023; revision accepted Dec. 20, 2023.

For correspondence or reprints, contact Nader Hirmas (naderhirmas@gmail.com).

Published online Feb. 8, 2024.

COPYRIGHT © 2024 by the Society of Nuclear Medicine and Molecular Imaging.

imaging, as well as acceptable side effects and long tumor retention times with regard to therapy.

Because of the favorable characteristics of this imaging modality, patients were referred for clinical ⁶⁸Ga-FAPI PET staging, both at initial diagnosis and for reevaluation, and were offered subsequent enrollment in our prospective observational ⁶⁸Ga-FAPI registry.

In this report, we assess the diagnostic accuracy of ⁶⁸Ga-FAPI compared with ¹⁸F-FDG PET separately for various tumor entities by analyzing sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy on perpatient and per-region bases.

MATERIALS AND METHODS

Study Design and Participants

Until March 2022, adult patients who underwent clinical ⁶⁸Ga-FAPI PET were offered the possibility to consent to a prospective observational trial for correlation and clinical follow-up of PET findings (NCT04571086). Patients signed a written informed consent form, and evaluation of data was approved by the ethics committee of the University Duisburg–Essen (20-9485-BO and 19-8991-BO). We previously reported data on ⁶⁸Ga-FAPI PET uptake and accuracy in sarcoma (n = 47 (19)), as well as ⁶⁸Ga-FAPI PET uptake in mixed cohorts (n = 69 (20), n = 91 (21), and n = 324 (22)). Patients with sarcoma, pancreatic cancer, and pleural mesothelioma have been excluded from this analysis since the results have already been or will be published separately. Moreover, solid tumor entities with fewer than 10 patients per entity for ⁶⁸Ga-FAPI PET accuracy assessment were excluded from this analysis.

Details of data collection (23,24), imaging and administration of radioligands (20,25,26), imaging analysis, lesion validation, follow-up (27), and statistical analysis are provided in the supplemental materials (available at http://jnm.snmjournals.org).

RESULTS

Patient Characteristics

We identified 133 patients, of whom 115 with adequate lesion validation were included in this analysis. In total, 8 tumor entities and 313 regions were analyzed; patient characteristics (n = 115) are outlined in Table 1. The median age was 63 y (interquartile range, 17 y). The most common tumor entities were prostate cancer (22/115, 19%), head and neck cancers (18/115, 16%), breast cancer (16/115, 14%), colorectal cancer (15/115, 13%), and bladder cancer (12/115, 10%). Most patients (81/115, 70%) underwent ⁶⁸Ga-FAPI PET imaging for restaging purposes. A total of 103 (90%) patients underwent concomitant imaging via ⁶⁸Ga-FAPI and ¹⁸F-FDG PET and had adequate lesion validation for the accuracy analysis, and this set of patients was included in the composite analysis.

Composite Analysis: Higher Diagnostic Accuracy with ⁶⁸Ga-FAPI PET Than with ¹⁸F-FDG PET

⁶⁸Ga-FAPI PET showed higher diagnostic accuracy than ¹⁸F-FDG PET in the diagnosis of colorectal cancer and prostate cancer as listed in Table 2.

At a per-patient level in colorectal cancer, 68 Ga-FAPI PET was superior to 18 F-FDG PET in accuracy (85.7% vs. 78.6%), sensitivity (90.9% vs. 81.8%), and NPV (66.7% vs. 50%). At a per-region level, 68 Ga-FAPI PET was superior to 18 F-FDG PET in accuracy (95.6% vs. 91.1%), sensitivity (94.1% vs. 88.2%), and PPV (94.1% vs. 88.2%).

Furthermore, at a per-patient level in prostate cancer, ⁶⁸Ga-FAPI PET was superior to ¹⁸F-FDG PET in accuracy (100% vs.

TABLE 1 Patient Characteristics (n = 115)

Variable	Data
Sex	
Male	71 (62%)
Female	44 (38%)
Median age at ⁶⁸ Ga-FAPI scan (y)	63 (17)
Tumor entities	
Prostate	22 (19%)
Head and neck	18 (16%)
Breast	16 (14%)
Colorectal	15 (13%)
Bladder	12 (10%)
Myeloma	12 (10%)
Kidney	10 (9%)
Lymphoma	10 (9%)
Regional detection with ⁶⁸ Ga-FAPI scan*	
No evidence of disease	15 (13%)
Primary or local disease detected	42 (37%)
Lymph node metastases detected	28 (24%)
Visceral metastases detected	38 (33%)
Bone metastases detected	24 (21%)
Scanning purposes	
Staging at initial diagnosis	34 (30%)
Restaging after therapy	81 (70%)
Prior therapy received*	
None	35 (30%)
Surgery	65 (57%)
Chemotherapy	53 (46%)
Radiation therapy	31 (27%)
Immune therapy	20 (17%)
Hormone therapy	16 (14%)
Radionuclide therapy	3 (3%)
Median uptake time (min)	
⁶⁸ Ga-FAPI	15 (25)
¹⁸ F-FDG	65 (21)
Median time between ⁶⁸ Ga-FAPI and ¹⁸ F-FDG (d)	0 (2)

*Different combinations are possible; hence, values do not add to 100%.

Qualitative data are number and percentage; continuous data are median and interquartile range.

90.9%) and sensitivity (100% vs. 90.9%). At a per-region level, ⁶⁸Ga-FAPI PET was superior to ¹⁸F-FDG PET in sensitivity (94.3% vs. 88.6%) and NPV (90.9% vs. 83.3%).

Composite Analysis: Comparable Diagnostic Accuracy Between ⁶⁸Ga-FAPI PET and ¹⁸F-FDG PET

⁶⁸Ga-FAPI PET was comparable to ¹⁸F-FDG PET in the diagnosis of breast cancer and head and neck cancers as listed in Table 3.

Tumor entity	2	Stratification	PET-positive/ total	Sensitivity	Specificity	Лdd	NPV	Accuracy
⁶⁸ Ga-FAPI PET								
Colorectal 1	14	Per-patient	11/14	90.9 (58.7–99.8)	66.7 (9.4–99.2)	90.9 (66.6–98)	66.7 (20.8–93.9)	85.7 (57.2–98.2)
		Per-region	17/45	94.1 (71.3–99.9)	96.4 (81.7–99.9)	94.1 (69.9–99.1)	96.4 (80.1–99.5)	95.6 (84.9–99.5)
Prostate 2	22	Per-patient	22/22	100 (84.6–100)	I	100	I	100
	-	Per-region	33/55	94.3 (80.8–99.3)	100 (83.2–100)	100	90.9 (72.3–97.5)	96.4 (87.5–99.6)
¹⁸ F-FDG PET								
Colorectal 1	14	Per-patient	10/14	81.8 (48.2–97.7)	66.7 (9.43–99.2)	90 (63.9–97.9)	50 (18.4–81.6)	78.6 (49.2–95.3)
	-	Per-region	17/45	88.2 (63.6–98.5)	92.9 (76.5–99.1)	88.2 (66.1–96.7)	92.9 (77.9–98)	91.1 (78.8–97.5)
Prostate 2	22 F	Per-patient	20/22	90.9 (70.84–98.9)	I	100	I	90.9
	-	Per-region	31/55	88.6 (73.3–96.8)	100 (83.2–100)	100	83.3 (66.53–92.63)	92.7 (82.41–97.98)

Т

TABLE 2

At a per-patient level in breast cancer, 68 Ga-FAPI PET and 18 F-FDG PET showed equal accuracy, sensitivity, specificity, PPV, and NPV (all 100%). At a per-region level, 68 Ga-FAPI PET showed accuracy (97.9% vs. 100%) and sensitivity (96.6% vs. 100%) comparable to those of 18 F-FDG PET but lower NPV (94.7% vs. 100%).

At a per-patient level in head and neck cancers, ⁶⁸Ga-FAPI PET and ¹⁸F-FDG PET showed equal accuracy (90%), sensitivity (100%), and PPV (90%). At a per-region level, ⁶⁸Ga-FAPI PET showed accuracy (90.3% vs. 93.6%) and specificity (86.7% for both) comparable to those of ¹⁸F-FDG PET but lower sensitivity (93.8% vs. 100%) and NPV (92.9% vs. 100%).

Composite Analysis: Lower Diagnostic Accuracy with ⁶⁸Ga-FAPI PET Than with ¹⁸F-FDG PET

⁶⁸Ga-FAPI PET showed lower accuracy than ¹⁸F-FDG PET in the diagnosis of bladder and kidney cancers, lymphoma, and myeloma as shown in Table 4.

At a per-patient level in bladder cancer, 68 Ga-FAPI PET showed lower accuracy (75% vs. 100%), sensitivity (72.7% vs. 100%), and NPV (25% vs. 100%) than 18 F-FDG PET. At a per-region level, 68 Ga-FAPI PET showed lower accuracy (89.2% vs. 94.4%), sensitivity (78.6% vs. 92.3%), and NPV (88% vs. 95.7%) than 18 F-FDG PET.

At a per-patient level in kidney cancer, 68 Ga-FAPI PET showed sensitivity comparable to that of 18 F-FDG PET (87.5% for both) but lower accuracy (80% vs. 90%), specificity (50% vs. 100%), and PPV (87.5% vs. 100%). At a per-region level, 68 Ga-FAPI PET showed accuracy (90.3% vs. 93.6%), sensitivity (92.9% for both), and NPV (93.8% vs. 94.1%) comparable to those of 68 Ga-FAPI PET but lower specificity (88.2% vs. 94.1%) and PPV (86.7% vs. 92.9%).

At a per-patient level in lymphoma, ⁶⁸Ga-FAPI PET showed lower accuracy (88.9% vs. 100%), sensitivity (87.5% vs. 100%), and NPV (50% vs. 100%) than ¹⁸F-FDG PET. At a per-region level, ⁶⁸Ga-FAPI PET showed lower accuracy (90% vs. 96.7%), sensitivity (78.6% vs. 100%), and NPV (84.2% vs. 100%) than ¹⁸F-FDG PET.

Finally, for myeloma at per-patient and per-region levels, accuracy (80% vs. 90%) and sensitivity (75% vs. 87.5%) were lower with 68 Ga-FAPI PET than with 18 F-FDG PET.

Histopathology-Only Analysis

In a subgroup of 45 patients and 5 tumor entities, accuracy was assessed by histopathology validation only (Supplemental Table 1). In line with the findings of the composite analysis, ⁶⁸Ga-FAPI PET demonstrated higher accuracy than ¹⁸F-FDG PET for prostate cancer, comparable accuracy for breast cancer and colorectal cancer, and lower accuracy for bladder and kidney cancers.

DISCUSSION

Here, we compare the diagnostic accuracy of ⁶⁸Ga-FAPI and ¹⁸F-FDG PET for various tumors. Tumor validation by a composite reference standard revealed that the diagnostic accuracy of ⁶⁸Ga-FAPI PET was higher than that of ¹⁸F-FDG PET in colorectal cancer and prostate cancer, comparable in breast cancer and head and neck cancer, and lower in bladder and kidney cancers, lymphoma, and myeloma. Histopathology-only analysis revealed that the diagnostic accuracy of ⁶⁸Ga-FAPI PET was higher than that of ¹⁸F-FDG PET in prostate cancer, comparable in breast and colorectal cancers, and lower in bladder and kidney cancers.

For cancers of the abdomen and pelvis, 68 Ga-FAPI uptake was low in normal parenchyma, such as bowel (SUV_{max} range, 0.08– 3.56), liver (SUV_{max} range, 0.47–2.91), and spleen (SUV_{max} range, 0.64–2.81) (*15,28,29*). This improves tumor delineation,

			0				
lumor entity n	Stratification	PEI-positive/total	Sensitivity	specificity	VЧЧ	NHN	Accuracy
⁶⁸ Ga-FAPI PET							
Breast 16	Ber-patient	15/16	100 (78.2–100)	100 (2.5–100)	100	100	100 (79.4–100)
	Per-region	28/47	96.6 (82.2–100)	100 (81.5–100)	100	94.7 (72.4–99.2)	97.9 (88.7–100)
Head and neck 10	Per-patient	10/10	100 (66.4–100)	0 (0–97.5)	(06) 06	I	90.0 (55.5–99.8)
	Per-region	17/31	93.8 (69.8–99.8)	86.7 (59.5–98.3)	88.2 (67.2–96.5)	92.9 (65.9–98.9)	90.3 (74.3–98)
¹⁸ F-FDG PET							
Breast 16	Ber-patient	15/16	100 (78.2–100)	100 (2.5–100)	100	100	100 (79.4–100)
	Per-region	28/47	100 (88.1–100)	100 (81.5–100)	100	100	100 (92.5–100)
Head and neck 10) Per-patient	10/10	100 (66.4–100)	I	(06) 06	I	90.0 (55.5–99.8)
	Per-region	18/31	100 (79.4–100)	86.7 (59.5–98.3)	88.9 (68.8–96.7)	100	93.6 (78.6–99.2)

TABLE

with absolute and tumor-to-liver uptakes being higher on ⁶⁸Ga-FAPI PET than on ¹⁸F-FDG PET, which may lead to superior diagnostic accuracy (22). This is particularly relevant in abdominal surgery, for example, after which patients are required to take nothing by mouth until bowel recovery. Also, the prevalence of coexisting diabetes (\leq 15.5% in patients with colon cancer, for instance (30)) poses limitations for molecular imaging with ¹⁸F-FDG PET. ⁶⁸Ga-FAPI PET in such a context has protocol advantages, given that no diet or fasting is required in preparation for imaging, and image acquisition can take place a few minutes after tracer application. ⁶⁸Ga-FAPI PET, therefore, has the potential to replace ¹⁸F-FDG for abdominal staging.

Our findings are corroborated by other studies that have also shown ⁶⁸Ga-FAPI PET to have diagnostic accuracy superior to that of ¹⁸F-FDG PET in breast cancer (31–33) and head and neck cancers (34–36). Moreover, reports have shown that ⁶⁸Ga-FAPI PET can detect PSMA-negative prostate cancer lesions (37–39), which can aid in the diagnostic process, with potential therapeutic implications.

With regard to lymphoma and myeloma, several studies have shown that ⁶⁸Ga-FAPI PET is inferior to (or at best, not superior to) ¹⁸F-FDG PET (40–43). For example, in comparison to colorectal cancer, lymphoma lesions show lower uptake with ⁶⁸Ga-FAPI than with ¹⁸F-FDG PET (22,41,44), higher background uptake, and, thus, lower tumor-to-background values (e.g., median SUV_{max} of 7.4 vs. 22.5 and median liver tumor-to-background ratio of 6.4 vs. 10.5 for ⁶⁸Ga-FAPI vs. ¹⁸F-FDG PET, respectively (22)). Taking this a step further, using systematic lesion validation and follow-up, our study revealed ⁶⁸Ga-FAPI to be less accurate than ¹⁸F-FDG PET in lymphoma and myeloma.

An ongoing prospective clinical trial at our department (NCT05160051) is exploring the diagnostic accuracy of ⁶⁸Ga-FAPI-46 PET and its effect on patient management and interreader reproducibility for different tumor entities. An interim analysis of findings has shown that ⁶⁸Ga-FAPI PET is associated with a lower rate of false-positive findings, especially in lymph node assessments (*44*).

With high tumor and low organ uptakes (22), as well as diagnostic accuracy across various tumor entities, ⁶⁸Ga-FAPI PET has a role as a gatekeeper for FAP-directed radioligand therapy. Feasibility of FAP radioligand therapy has been reported for ⁹⁰Y- and 153 Sm-labeled compounds in breast (13) and ovarian (45) cancer. as well as sarcomas and pancreatic cancers (17,46). ¹⁷⁷Lu-labeled compounds have also been used in multiple advanced and refractory tumors, including thyroid cancer (16,47-49). In patients with intense FAP expression on ⁶⁸Ga-FAPI PET, ⁹⁰Y-FAPI-46 radioligand therapy led to disease control in about one third of patients with initially progressive sarcomas, pancreatic cancer, and other cancers (50), and the novel dimeric ¹⁷⁷Lu-labeled FAPI radioligand (177Lu-DOTAGA.(SA.FAPi)2) led to disease control in almost half the patients with radioiodine-refractory differentiated thyroid cancer who had progressed on tyrosine kinase inhibitors (49). FAPI imaging therefore has the potential to enhance drug development with targeted clinical applications.

One notable example of a FAP-targeting drug that has shown clinical promise is talabostat, which has demonstrated tumor control in 21% of patients with colorectal cancer (51). Moreover, targeting FAP with chimeric antigen receptor T cells has shown promise in preclinical studies and case reports (52,53), and there is potential for combination with cancer vaccines or immune checkpoint inhibitors (such as PD-1 inhibitors), which would lead to further blockade of immunosuppressive factors (52). Another promising approach is using cancer vaccines that successfully target FAP.

Stratification	PET-positive/total	Sensitivity	Specificity	РРV	NPV	Accuracy
Per-patient	8/12	72.7 (39–94)	100 (2.5–100)	100	25 (11.3–46.7)	75 (42.8–94.5)
Per-region	12/37	78.6 (49.2–95.3)	95.7 (78.1–99.9)	91.7 (61.34–98.7)	88 (72.8–95.3)	89.2 (74.6–97)
Per-patient	8/10	87.5 (47.4–99.7)	50 (1.26–98.7)	87.5 (63.1–96.6)	50 (9.13–90.9)	80 (44.4–97.5)
Per-region	15/31	92.9 (66.1–99.8)	88.2 (63.6–98.5)	86.7 (63.7–96)	93.8 (69.2–99)	90.3 (74.3–98)
Per-patient	6/2	87.5 (47.4–99.7)	100 (2.5–100)	100	50 (13.8–86.2)	88.9 (51.8–99.7)
Per-region	11/30	78.6 (49.2–95.3)	100 (79.4–100)	100	84.2 (66.2–93.6)	90 (73.5–97.9)
Per-patient	6/10	75 (34.9–96.8)	100 (15.8–100)	100	50 (23.1–76.9)	80 (44.4–97.5)
Per-region	6/10	75 (34.9–96.8)	100 (15.8–100)	100	50 (23.1–76.9)	80 (44.4–97.5)
Per-patient	11/12	100 (71.5–100)	100 (2.5–100)	100	100	100 (73.5–100)
Per-region	13/36	92.3 (64–99.8)	95.7 (78.1–99.9)	92.31 (63.7–98.8)	95.7 (77–99.3)	94.4 (81.3–99.3)
Per-patient	7/10	87.5 (47.4–99.7)	100 (15.8–100)	100	66.7 (24.2–92.6)	90 (55.5–99.8)
Per-region	14/31	92.9 (66.1–99.8)	94.1 (71.3–99.9)	92.9 (65.9–98.9)	94.12 (70.7–99.1)	93.55 (78.6–99.2)
Per-patient	8/9	100 (63.1–100)	100 (2.5–100)	100	100	100 (66.4–100)
Per-region	15/30	100 (76.8–100)	93.8 (69.8–99.8)	93.33 (67.7–98.9)	100	96.7 (82.8–99.9)
Per-patient	7/10	87.5 (47.4–99.7)	100 (15.8–100)	100	66.7 (24.2–92.6)	90 (55.5–99.8)
Per-region	01/2	87.5 (47.4–99.7)	100 (15.8–100)	100	66.7 (24.2–92.6)	90 (55.5–99.8)
Data in parentheses are 95% Cl.						
<u></u>	Per-region Per-patient Per-region Per-patient Per-region CI.	r-region r-patient r-region r-patient r-patient r-region	r-region 13/36 r-patient 7/10 r-region 14/31 r-patient 8/9 r-region 15/30 r-patient 7/10	r-region 13/36 92.3 (64-99.8) r-patient 7/10 87.5 (47.4-99.7) r-region 14/31 92.9 (66.1-99.8) r-patient 8/9 100 (63.1-100) r-patient 8/9 100 (63.1-100) r-patient 7/10 87.5 (47.4-99.7) r-region 7/10 87.5 (47.4-99.7) r-patient 7/10 87.5 (47.4-99.7)	r-region 13/36 92.3 (64-99.8) 95.7 (78.1-99.9) r-patient 7/10 87.5 (47.4-99.7) 100 (15.8-100) r-region 14/31 92.9 (66.1-99.8) 94.1 (71.3-99.9) r-patient 8/9 100 (63.1-100) 100 (2.5-100) r-patient 8/9 100 (63.1-100) 100 (2.5-100) r-patient 8/9 100 (63.1-100) 93.8 (69.8-99.8) r-region 15/30 100 (76.8-100) 93.8 (69.8-99.8) r-region 7/10 87.5 (47.4-99.7) 100 (15.8-100) r-region 7/10 87.5 (47.4-99.7) 100 (15.8-100)	r-region 13/36 92.3 (64-99.8) 95.7 (78.1-99.9) 92.31 (63.7-98.8) r-patient 7/10 87.5 (47-490.7) 100 (15.8-100) 100 r-region 14/31 92.9 (66.1-99.8) 94.1 (71.3-99.9) 92.9 (65.9-98.9) 9 r-region 14/31 92.9 (66.1-99.8) 94.1 (71.3-99.9) 92.9 (65.9-98.9) 9 r-region 14/31 92.9 (66.1-99.8) 94.1 (71.3-99.9) 92.9 (65.9-98.9) 9 r-region 14/31 92.9 (66.1-99.8) 94.1 (71.3-99.9) 92.9 (65.9-98.9) 9 r-patient 8/9 100 (63.1-100) 100 (2.5-100) 100 100 r-region 15/30 100 (76.8-100) 93.8 (69.8-99.8) 93.33 (67.7-98.9) r-patient 7/10 87.5 (47.4-99.7) 100 (15.8-100) 100 r-region 7/10 87.5 (47.4-99.7) 100 (15.8-100) 100

TABLE 4 Comparison of Diagnostic Efficacy Between ⁶⁸Ga-FAPI and ¹⁸F-FDG PET (Per-Patient and Per-Region Analysis) for Tumors in Which ⁶⁸Ga-FAPI Underperformed in

 $^{68}\text{Ga-FAPI}$ vs. $^{18}\text{F-FDG}$ for Oncologic PET $\,$ • Hirmas et al. 5 particularly the genome of stromal fibroblasts (*54*). As such, future drug development and its potential clinical applications may be enhanced through ⁶⁸Ga-FAPI imaging, which aids in selecting patients whose tumors exhibit high ⁶⁸Ga-FAPI uptake and who would potentially benefit from FAP-directed therapy. This theranostic approach also has the potential to improve clinical trial design.

Our study is limited by its retrospective design and the small number of patients included per tumor entity. Histopathology was not available for all patients, as tissue sampling is not routinely performed, and biopsy of metastatic lesions may be difficult because they may be small or remote. Thus, most lesion follow-up was based on correlative or follow-up imaging with known intrinsic limitations. Despite these limitations, the study provided valuable systematic information on the diagnostic efficacy of 68 Ga-FAPI PET from an ongoing registry study evaluating 68 Ga-FAPI and 18 F-FDG PET, using a composite reference standard with adequate follow-up time ($\leq \sim 6$ mo) and across a wide range of tumor entities, thereby adding to the growing pool of theranostic data.

CONCLUSION

When compared with ¹⁸F-FDG PET, ⁶⁸Ga-FAPI PET demonstrated higher accuracy in the diagnosis of colorectal cancer and prostate cancer, as well as comparable diagnostic performance for cancers of the breast and head and neck. ⁶⁸Ga-FAPI has the potential for improved staging or theranostic screening, particularly for these tumor entities.

DISCLOSURE

Rainer Hamacher is supported by the Clinician Scientist Program of the University Medicine Essen Clinician Scientist Academy (UMEA) sponsored by the faculty of medicine and Deutsche Forschungsgemeinschaft (DFG) and has received travel grants from Lilly, Novartis, and Pharma Mar, as well as fees from Lilly and Pharma Mar. Lukas Kessler is a consultant for AAA and BTG and received fees from Sanofi. Kim Pabst is a consultant for Novartis, has received a Junior Clinician Scientist Stipend from the University Medicine Essen Clinician Scientist Academy (UMEA) sponsored by the Faculty of Medicine at the University of Duisburg-Essen and the Deutsche Forschungsgemeinschaft (DFG), and has received research funding from Bayer outside the submitted work. Stefan Kasper reports personal fees and grants from AstraZeneca, Merck Serone, Merck Sharpe & Dohme, Amgen, Bristol Myers Squibb, Roche, Lilly, Servier, Incyte, and SanofiAventis outside the submitted work. Claudia Kesch has received consultant fees from Apogepha, research funding from AAA/Novartis and Curie Therapeutics, and compensation for travel from Janssen R&D, Amgen, and Bayer. Bastian von Tresckow is an advisor or consultant for Allogene, BMS/Celgene, Cerus, Incyte, IQVIA, Gilead Kite, Lilly, Miltenyi, Novartis, Noscendo, Pentixapharm, Roche, Amgen, Pfizer, Takeda, Merck Sharp & Dohme, and Gilead Kite; has received honoraria from AstraZeneca, BMS, Incyte, Lilly, Novartis, Roche Pharma AG, Takeda, and Merck Sharp & Dohme; reports research funding from Novartis (to the institution), Merck Sharp & Dohme (to the institution), and Takeda (to the institution); and reports travel support from AbbVie, AstraZeneca, Gilead Kite, Lilly, Merck Sharp & Dohme, Pierre Fabre, Roche, Takeda, and Novartis. Hubertus Hautzel reports research funding and travel support from PARI GmbH outside the submitted work. Martin Glas reports honoraria from Roche, Novartis, UCB, Abbvie, Daiichi Sankyo, Novocure, Bayer, Janssen-Cilag, Medac, Merck, and Kyowa Kirin; travel support from Novocure and Medac; and a research grant from Novocure. Ken Herrmann reports personal fees from Bayer, SIR-TEX, Adacap, Curium, Endocyte, IPSEN, Siemens Healthineers, GE Healthcare, Amgen, Novartis, ymabs, Aktis, Oncology, and Pharma15, as well as personal and other fees from SOFIE Biosciences, nonfinancial support from ABX, and grants and personal fees from BTG, all of which are outside the submitted work. Boris Hadaschik declares grants to the institution from Novartis, BMS, and the German Research Foundation; consulting fees from ABX, Amgen, AstraZeneca, Bayer, BMS, Janssen, Lightpoint Medical, Novartis, and Pfizer; payment for lectures from Janssen and Monrol; support for travel or meeting attendance from AstraZeneca, Bayer, and Janssen; and participation on data safety monitoring boards for Janssen, all outside the submitted work. Philipp Harter reports honoraria from Amgen, AstraZeneca, GSK, Roche, Sotio, Stryker, Zai Lab, MSD, Clovis, Eisai, Mersana, and Exscientia. He is on the advisory board for Astra Zeneca, Roche, GSK, Clovis, Immunogen, MSD, Miltenvi, Novartis, and Eisai. He has received research funding (to the institution) from AstraZeneca, Roche, GSK, Genmab, DFG, European Union, DKH, Immunogen, Seagen, Clovis, and Novartis. Jens Siveke received honoraria as a consultant or for continuing medical education presentations from AstraZeneca, Bayer, Bristol-Myers Squibb, Eisbach Bio, Immunocore, Novartis, Roche/Genentech, and Servier; his institution receives research funding from Bristol-Myers Squibb, Celgene, Eisbach Bio, and Roche/Genentech; and he holds ownership and serves on the board of directors of Pharma15, all outside the submitted work. Wolfgang P. Fendler reports fees from SOFIE Biosciences (research funding), Janssen (consultant, speaker), Calyx (consultant, image review), Bayer (consultant, speaker, research funding), Novartis (speaker, consultant), Telix (speaker), GE Healthcare (speaker), Eczacibasi Monrol (speaker), Abx (speaker), and Amgen (speaker) outside the submitted work. No other potential conflict of interest relevant to this article was reported.

KEY POINTS

QUESTION: How does ⁶⁸Ga-FAPI compare with ¹⁸F-FDG PET in the diagnosis of various malignancies?

PERTINENT FINDINGS: We compared the diagnostic accuracy of ⁶⁸Ga-FAPI and ¹⁸F-FDG PET for the detection of various tumors. Tumor validation by a composite reference standard revealed higher diagnostic accuracy for ⁶⁸Ga-FAPI PET in colorectal and prostate cancers, comparable diagnostic performance for cancers of the breast and head and neck, and lower diagnostic accuracy for bladder and kidney cancers, lymphoma, and myeloma.

IMPLICATIONS FOR PATIENT CARE: ⁶⁸Ga-FAPI PET is particularly suited for the diagnosis of colorectal cancer, prostate cancer, and cancers of the breast and head and neck. ⁶⁸Ga-FAPI PET offers theranostic screening and has the potential for more precise staging and management of patients who have these entities than is possible with ¹⁸F-FDG PET.

REFERENCES

 van Tinteren H, Hoekstra OS, Smit EF, et al. Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial. *Lancet.* 2002;359:1388–1393.

- Ell PJ. The contribution of PET/CT to improved patient management. Br J Radiol. 2006;79:32–36.
- Choi JY, Lee KH, Shim YM, et al. Improved detection of individual nodal involvement in squamous cell carcinoma of the esophagus by FDG PET. J Nucl Med. 2000;41:808–815.
- Annovazzi A, Rea S, Zoccali C, et al. Diagnostic and clinical impact of ¹⁸F-FDG PET/CT in staging and restaging soft-tissue sarcomas of the extremities and trunk: monoinstitutional retrospective study of a sarcoma referral center. J Clin Med. 2020;9:2549.
- Grimer R, Judson I, Peake D, Seddon B. Guidelines for the management of soft tissue sarcomas. *Sarcoma*. 2010;2010:506182.
- Ioannidis JPA, Lau J. ¹⁸F-FDG PET for the diagnosis and grading of soft-tissue sarcoma: a meta-analysis. *J Nucl Med.* 2003;44:717–724.
- Erdogan B, Ao M, White LM, et al. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J Cell Biol. 2017;216:3799–3816.
- Chen WT, Kelly T. Seprase complexes in cellular invasiveness. *Cancer Metastasis Rev.* 2003;22:259–269.
- Keane FM, Nadvi NA, Yao TW, Gorrell MD, Neuropeptide Y, B-type natriuretic peptide, substance P and peptide YY are novel substrates of fibroblast activation protein-alpha. *FEBS J.* 2011;278:1316–1332.
- Huang Y, Wang S, Kelly T. Seprase promotes rapid tumor growth and increased microvessel density in a mouse model of human breast cancer. *Cancer Res.* 2004; 64:2712–2716.
- Kelly T. Fibroblast activation protein-alpha and dipeptidyl peptidase IV (CD26): cell-surface proteases that activate cell signaling and are potential targets for cancer therapy. *Drug Resist Updat.* 2005;8:51–58.
- Mueller SC, Ghersi G, Akiyama SK, et al. A novel protease-docking function of integrin at invadopodia. J Biol Chem. 1999;274:24947–24952.
- Lindner T, Loktev A, Altmann A, et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med. 2018;59:1415–1422.
- Loktev A, Lindner T, Mier W, et al. A tumor-imaging method targeting cancerassociated fibroblasts. J Nucl Med. 2018;59:1423–1429.
- Giesel FL, Kratochwil C, Lindner T, et al. ⁶⁸Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. *J Nucl Med.* 2019;60:386–392.
- Baum RP, Schuchardt C, Singh A, et al. Feasibility, biodistribution, and preliminary dosimetry in peptide-targeted radionuclide therapy of diverse adenocarcinomas using ¹⁷⁷Lu-FAP-2286: first-in-humans results. *J Nucl Med.* 2022;63:415–423.
- Ferdinandus J, Fragoso Costa P, Kessler L, et al. Initial clinical experience with ⁹⁰Y-FAPI-46 radioligand therapy for advanced stage solid tumors: a case series of nine patients. *J Nucl Med.* 2022;63:727–734.
- Kratochwil C, Flechsig P, Lindner T, et al. ⁶⁸Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019;60:801–805.
- Kessler L, Ferdinandus J, Hirmas N, et al. ⁶⁸Ga-FAPI as a diagnostic tool in sarcoma: data from the ⁶⁸Ga-FAPI PET prospective observational trial. *J Nucl Med.* 2022;63:89–95.
- Ferdinandus J, Kessler L, Hirmas N, et al. Equivalent tumor detection for early and late FAPI-46 PET acquisition. *Eur J Nucl Med Mol Imaging*. 2021;48:3221–3227.
- Kessler L, Ferdinandus J, Hirmas N, et al. Pitfalls and common findings in ⁶⁸Ga-FAPI-PET: a pictorial analysis. J Nucl Med. 2022;63:890–896.
- Hirmas N, Hamacher R, Sraieb M, et al. Fibroblast activation protein positron emission tomography and histopathology in a single-center database of 324 patients and 21 tumor entities. *J Nucl Med.* 2023;64:711–716.
- Harris PA, Taylor R, Minor BL, et al.; the REDCap consortium. Building an international community of software platform partners. J Biomed Inform. 2019;95:103208.
- Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap): a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–381.
- Lindner T, Loktev A, Giesel F, Kratochwil C, Altmann A, Haberkorn U. Targeting of activated fibroblasts for imaging and therapy. *EJNMMI Radiopharm Chem.* 2019;4:16.
- Loktev A, Lindner T, Burger EM, et al. Development of fibroblast activation proteintargeted radiotracers with improved tumor retention. J Nucl Med. 2019;60:1421–1429.
- Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). *Eur J Cancer*. 2009;45:228–247.
- Gündoğan C, Güzel Y, Can C, Kaplan İ, Kömek H. FAPI-04 uptake in healthy tissues of cancer patients in ⁶⁸Ga-FAPI-04 PET/CT imaging. *Contrast Media Mol Imaging*, 2021;2021:9750080.
- Giesel FL, Kratochwil C, Schlittenhardt J, et al. Head-to-head intra-individual comparison of biodistribution and tumor uptake of ⁶⁸Ga-FAPI and ¹⁸F-FDG PET/CT in cancer patients. *Eur J Nucl Med Mol Imaging*. 2021;48:4377–4385.
- Roderburg C, Loosen SH, Hoyer L, Luedde T, Kostev K. Prevalence of diabetes mellitus among 80,193 gastrointestinal cancer patients in five European and three Asian countries. J Cancer Res Clin Oncol. 2022;148:1057–1062.

- Zheng S, Lin J, Zhu Y, et al. ⁶⁸Ga-FAPI versus ¹⁸F-FDG PET/CT in evaluating newly diagnosed breast cancer patients: a head-to-head comparative study. *Clin Nucl Med.* 2023;48:e104–e109.
- Kömek H, Can C, Güzel Y, et al. ⁶⁸Ga-FAPI-04 PET/CT, a new step in breast cancer imaging: a comparative pilot study with the ¹⁸F-FDG PET/CT. *Ann Nucl Med.* 2021;35:744–752.
- 33. Ballal S, Yadav MP, Moon ES, et al. Biodistribution, pharmacokinetics, dosimetry of [⁶⁸Ga]Ga-DOTA.SA.FAPi, and the head-to-head comparison with [¹⁸F]F-FDG PET/CT in patients with various cancers. *Eur J Nucl Med Mol Imaging*. 2021;48: 1915–1931.
- 34. Chen S, Chen Z, Zou G, et al. Accurate preoperative staging with [⁶⁸Ga]Ga-FAPI PET/CT for patients with oral squamous cell carcinoma: a comparison to 2-[¹⁸F]FDG PET/CT. *Eur Radiol.* 2022;32:6070–6079.
- Fu H, Wu J, Huang J, et al. ⁶⁸Ga fibroblast activation protein inhibitor PET/CT in the detection of metastatic thyroid cancer: comparison with ¹⁸F-FDG PET/CT. *Radiology*. 2022;304:397–405.
- 36. Linz C, Brands RC, Kertels O, et al. Targeting fibroblast activation protein in newly diagnosed squamous cell carcinoma of the oral cavity: initial experience and comparison to [¹⁸F]FDG PET/CT and MRI. *Eur J Nucl Med Mol Imaging.* 2021; 48:3951–3960.
- Khreish F, Rosar F, Kratochwil C, Giesel FL, Haberkorn U, Ezziddin S. Positive FAPI-PET/CT in a metastatic castration-resistant prostate cancer patient with PSMA-negative/FDG-positive disease. *Eur J Nucl Med Mol Imaging*. 2020;47: 2040–2041.
- Pang Y, Meng T, Xu W, Shang Q, Chen H. ⁶⁸Ga-FAPI PET/CT detected non-PSMA/FDG-avid primary tumor in de novo metastatic prostate cancer. *Clin Nucl Med.* 2022;47:1108–1111.
- Aryana K, Manafi-Farid R, Amini H, Divband G, Moghadam SZ. ⁶⁸Ga-FAPI-46 PET/CT in a metastatic castration-resistant prostate cancer patient with low PSMA expression. *Clin Nucl Med.* 2022;47:972–973.
- Lan L, Liu H, Wang Y, et al. The potential utility of [⁶⁸Ga]Ga-DOTA-FAPI-04 as a novel broad-spectrum oncological and non-oncological imaging agent: comparison with [¹⁸F]FDG. *Eur J Nucl Med Mol Imaging*. 2022;49:963–979.
- Chen X, Lin X, Yuan T, Wei M, Wang X. Head-to-head comparison between ⁶⁸Ga-FAPI-04 and [¹⁸F]-FDG-PET/CT in lymphomas: a preliminary analysis [abstract]. J Nucl Med. 2022;63(suppl 2):2272.
- Elboga U, Sahin E, Cayirli YB, et al. Comparison of [⁶⁸Ga]-FAPI PET/CT and [¹⁸F]-FDG PET/CT in multiple myeloma: clinical experience. *Tomography*. 2022; 8:293–302.
- Jin X, Wei M, Wang S, et al. Detecting fibroblast activation proteins in lymphoma using ⁶⁸Ga-FAPI PET/CT. J Nucl Med. 2022;63:212–217.
- Fendler WP, Bartel T, Pabst KM, et al. ⁶⁸Ga-FAPI-46 PET for cancer imaging: a prospective single-arm clinical trial [abstract]. J Clin Oncol. 2023;41(suppl):3064.
- Lindner T, Altmann A, Kramer S, et al. Design and development of ^{99m}Tc-labeled FAPI tracers for SPECT imaging and ¹⁸⁸Re therapy. J Nucl Med. 2020;61:1507–1513.
- Kratochwil C, Giesel FL, Rathke H, et al. [¹⁵³Sm]samarium-labeled FAPI-46 radioligand therapy in a patient with lung metastases of a sarcoma. *Eur J Nucl Med Mol Imaging*. 2021;48:3011–3013.
- Kuyumcu S, Kovan B, Sanli Y, et al. Safety of fibroblast activation proteintargeted radionuclide therapy by a low-dose dosimetric approach using ¹⁷⁷Lu-FAPI04. *Clin Nucl Med.* 2021;46:641–646.
- Assadi M, Rekabpour SJ, Jafari E, et al. Feasibility and therapeutic potential of ¹⁷⁷Lu-fibroblast activation protein inhibitor-46 for patients with relapsed or refractory cancers: a preliminary study. *Clin Nucl Med.* 2021;46:e523–e530.
- Ballal S, Yadav MP, Moon ES, et al. Novel fibroblast activation protein inhibitorbased targeted theranostics for radioiodine-refractory differentiated thyroid cancer patients: a pilot study. *Thyroid*. 2022;32:65–77.
- Fendler WP, Pabst KM, Kessler L, et al. Safety and efficacy of ⁹⁰Y-FAPI-46 radioligand therapy in patients with advanced sarcoma and other cancer entities. *Clin Cancer Res.* 2022;28:4346–4353.
- Narra K, Mullins SR, Lee HO, et al. Phase II trial of single agent Val-boroPro (talabostat) inhibiting fibroblast activation protein in patients with metastatic colorectal cancer. *Cancer Biol Ther.* 2007;6:1691–1699.
- Bughda R, Dimou P, D'Souza RR, Klampatsa A. Fibroblast activation protein (FAP)-targeted CAR-T cells: launching an attack on tumor stroma. *ImmunoTargets Ther.* 2021;10:313–323.
- 53. Pircher M, Schuberth P, Gulati P, et al. FAP-specific re-directed T cells first in-man study in malignant pleural mesothelioma: experience of the first patient treated [abstract]. *J Immunother Cancer*. 2015;3(suppl 2):P120.
- Busek P, Mateu R, Zubal M, Kotackova L, Sedo A. Targeting fibroblast activation protein in cancer: prospects and caveats. *Front Biosci (Landmark Ed)*. 2018;23: 1933–1968.